《金属钝化膜击破机制研究取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-11
  • 中国科学院金属研究所固体原子像研究部研究员马秀良、副研究员张波和博士王静等人组成的介质条件下材料电子显微学研究小组在原子尺度下直接获得金属表面超薄钝化膜的剖面显微图像,并揭示了氯离子击破钝化膜的作用机制。7月2日,英国《自然-通讯》( Nature Communications )在线发表了该项研究成果。9月7日,美国《科学》( Science )周刊在相关专栏以 Tracking corroding chloride 为题对该成果进行了推介,认为“利用透射电子显微技术对氯离子传输的直接观测加深了对金属腐蚀过程的理解”。

    金属表面几个纳米厚的钝化膜赋予其优良的抗均匀腐蚀能力,然而,在抗均匀腐蚀的同时,金属的局部点状腐蚀(即“点蚀”)却难以避免。点蚀的发生起始于材料表面,最终向材料表面以下的纵深方向迅速扩展。因此,点蚀破坏具有极大的隐蔽性和突发性,特别是在石油、化工、核电等领域,点蚀容易造成金属管壁穿孔,使大量油、气泄漏,甚至造成火 灾、爆 炸等灾难性事故。

    点蚀的发生起始于钝化膜的局部破损,是材料科学与工程领域中的经典问题之一。由于钝化膜非常薄(3~5nm),对其结构的直接观测极具挑战性,探究氯离子导致的结构演变则更为困难。自上世纪六十年代开始至今,材料科学家普遍采用表面谱学等间接的实验手段研究氯离子击破钝化膜的机制,并因此提出了多种模型和假说,但尚无定论。其争论的核心问题是氯离子在钝化膜中的存在位置及作用方式。

    金属所固体原子像研究部界面结构研究团队长期致力于材料基础科学问题的电子显微学研究,经过多年的学术积累,在解决上述基础科学难题方面近来取得突破。他们利用像差校正透射电子显微技术证实,钝化膜由极其微小的具有尖晶石结构的纳米晶和非晶组成;基于定量电子显微学分析并结合相应的理论计算,发现氯离子沿着纳米晶和非晶之间的特殊“晶界”并以贯穿通道为路径,传输至钝化膜与金属之间的界面。到达界面处的氯离子造成基体一侧的晶格膨胀、界面的起伏以及膜一侧的疏松化,并在界面处引入了拉应力。起伏界面的凸起在应力的作用下最终成为钝化膜发生破裂的起始位置。这一研究成果为揭示氯离子与金属钝化膜的交互作用机制提供了直接的实验证据,为修正和完善数十年来基于模型和假说所建立起来的钝化膜击破理论提供了原子尺度的结构信息。

    该项研究得到国家自然科学基金、中国科学院前沿科学重点研究项目以及金属所创新基金重点项目等资助。

相关报告
  • 《线粒体同源膜融合机制研究取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2016-12-08
    • 2016年11月14日,《Journal of Cell Biology》杂志在线发表了饶子和院士课题组和胡俊杰课题组合作的研究文章,题为“Structures of human mitofusin 1 provide insight into mitochondrial tethering”。该研究阐述了线粒体融合素(mitofusin, MFN)介导线粒体外膜融合的结构基础,并提出了MFN介导线粒体的膜拴连需要GTP水解的分子机制。   线粒体是高度动态变化的细胞器,在细胞内不断地进行分裂和融合。MFN家族蛋白位于线粒体外膜,是一类发动蛋白(dynamin)超家族成员,在介导线粒体同源膜融合过程中发挥重要作用,MFN1或2的缺失导致小鼠胚胎致死,MFN2的突变与人类的神经退行性疾病CMT2A有密切关联,但是MFN的作用机制还知之甚少。遗憾的是,MFN虽已被发现近二十年,但由于难以表达纯化,其机制研究一直没有进展。   饶子和院士清华大学课题组在系统筛选了MFN1截短体后,成功纯化解析了MFN1-MGD结合 GDP的晶体结构。MGD为最小GTP酶结构域的简称,其分子构架包括了人源MFN1原先预测的GTP酶,以及C端尾部的一个α 螺旋。胡俊杰课题组进一步从生化和细胞层面分析了结构信息,发现由GTP酶的延伸段和C端尾部形成的螺旋束(HB)的稳定是保证酶活的重要条件。 MGD可以结合水解GTP,并介导二聚体的形成。然而,MFN的核苷酸结合位点较为狭窄紧凑,对核苷酸类似物较为敏感,且不容易容纳镁离子。此外,连有跨膜区的MGD可以在GTP的存在下在体外介导膜拴连,但免疫共沉淀实验显示,C端尾部单独存在时,并没有产生像2004年其他研究组报道的分子间同源互作。这些结果证明 MFN1极有可能通过依赖GTP的二聚化介导膜融合所需的膜拴连,而并非像领域内之前普遍认为的C端尾部拴连模型。
  • 《水通道蛋白门控分子机制研究中取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-07
    • 近日,中国科学院武汉物理与数学研究所研究员杨俊团队和华南理工大学教授王菊芳团队合作,在水通道蛋白的门控分子机制方面取得新进展。他们在功能活性状态下对水通道蛋白AqpZ关键“门控”残基的结构、动力学以及水分子接近性进行研究,揭示了水通道蛋白AqpZ的水分子通道处于“永久开放”状态。相关研究结果发表在6月27日的《美国化学会志》(Journal of the American Chemical Society)杂志上(内封面)。 水通道蛋白为细胞膜上特异的水分子通道,与人类健康和疾病密切相关。在以往的研究中,人们根据水通道蛋白晶体结构的水道分析,提出“盖帽”以及“挤压”门控机制。其中AqpZ为典型的“挤压”门控机制代表。在AqpZ同源四聚体的晶体结构模型中,R189侧链存在“朝上”和“朝下”两种不同构象,进一步分子动力学模拟发现R189侧链能够上下快速摆动。R189残基被认为是AqpZ的水道门控开关,它通过侧链上下摆动,改变附近水道直径大小从而控制水道开关。 膜蛋白的结构和功能状态对环境影响敏感,细微的环境变量都可能造成膜蛋白结构和分子机制认识的偏差。在晶体环境中AqpZ的R189侧链的不同构象分布可能来自R189的不同功能状态或者环境因素偏差,因此在天然磷脂膜环境中,AqpZ蛋白的R189侧链门控分子机制值得探究和验证。 在该项研究工作中,研究人员首先通过化学位移分布以及偶极耦合常数测量证实AqpZ的R189侧链在磷脂膜环境只存在一种稳定的刚性状态,不具有大幅度的运动。然后通过CS-Rosetta手段计算出AqpZ在磷脂膜环境中的三维结构模型,发现R189侧链胍基和A117残基羰基形成稳定的H键,将R189侧链稳定在朝上“打开”状态。最后通过蛋白水分子交换常数测量,验证了R189侧链朝上“打开”分布的合理性。通过AqpZ的结构、动力学以及水分子交换常数分析,证实了AqpZ在功能活性状态下R189侧链朝上稳定分布,处于永久“开放”状态。这项工作提出了水通道蛋白研究中全新的门控分子机制,加深了水通道蛋白的认识,同时也强调了研究环境对膜蛋白分子机制研究的重要性。 这项工作得到了科技部、国家自然科学基金委和中国科学院的基金资助。新加坡国立大学教授林青松、美国强磁场中心博士傅日强、美国NIH糖尿病消化与肾病研究所博士沈杨、武汉物数所研究员郑安民参与了这项研究工作。