《水通道蛋白门控分子机制研究中取得进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-07
  • 近日,中国科学院武汉物理与数学研究所研究员杨俊团队和华南理工大学教授王菊芳团队合作,在水通道蛋白的门控分子机制方面取得新进展。他们在功能活性状态下对水通道蛋白AqpZ关键“门控”残基的结构、动力学以及水分子接近性进行研究,揭示了水通道蛋白AqpZ的水分子通道处于“永久开放”状态。相关研究结果发表在6月27日的《美国化学会志》(Journal of the American Chemical Society)杂志上(内封面)。

    水通道蛋白为细胞膜上特异的水分子通道,与人类健康和疾病密切相关。在以往的研究中,人们根据水通道蛋白晶体结构的水道分析,提出“盖帽”以及“挤压”门控机制。其中AqpZ为典型的“挤压”门控机制代表。在AqpZ同源四聚体的晶体结构模型中,R189侧链存在“朝上”和“朝下”两种不同构象,进一步分子动力学模拟发现R189侧链能够上下快速摆动。R189残基被认为是AqpZ的水道门控开关,它通过侧链上下摆动,改变附近水道直径大小从而控制水道开关。

    膜蛋白的结构和功能状态对环境影响敏感,细微的环境变量都可能造成膜蛋白结构和分子机制认识的偏差。在晶体环境中AqpZ的R189侧链的不同构象分布可能来自R189的不同功能状态或者环境因素偏差,因此在天然磷脂膜环境中,AqpZ蛋白的R189侧链门控分子机制值得探究和验证。

    在该项研究工作中,研究人员首先通过化学位移分布以及偶极耦合常数测量证实AqpZ的R189侧链在磷脂膜环境只存在一种稳定的刚性状态,不具有大幅度的运动。然后通过CS-Rosetta手段计算出AqpZ在磷脂膜环境中的三维结构模型,发现R189侧链胍基和A117残基羰基形成稳定的H键,将R189侧链稳定在朝上“打开”状态。最后通过蛋白水分子交换常数测量,验证了R189侧链朝上“打开”分布的合理性。通过AqpZ的结构、动力学以及水分子交换常数分析,证实了AqpZ在功能活性状态下R189侧链朝上稳定分布,处于永久“开放”状态。这项工作提出了水通道蛋白研究中全新的门控分子机制,加深了水通道蛋白的认识,同时也强调了研究环境对膜蛋白分子机制研究的重要性。

    这项工作得到了科技部、国家自然科学基金委和中国科学院的基金资助。新加坡国立大学教授林青松、美国强磁场中心博士傅日强、美国NIH糖尿病消化与肾病研究所博士沈杨、武汉物数所研究员郑安民参与了这项研究工作。

  • 原文来源:http://news.bioon.com/article/6724519.html
相关报告
  • 《水通道蛋白门控分子机制研究中取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-07
    • 近日,中国科学院武汉物理与数学研究所研究员杨俊团队和华南理工大学教授王菊芳团队合作,在水通道蛋白的门控分子机制方面取得新进展。他们在功能活性状态下对水通道蛋白AqpZ关键“门控”残基的结构、动力学以及水分子接近性进行研究,揭示了水通道蛋白AqpZ的水分子通道处于“永久开放”状态。相关研究结果发表在6月27日的《美国化学会志》(Journal of the American Chemical Society)杂志上(内封面)。 水通道蛋白为细胞膜上特异的水分子通道,与人类健康和疾病密切相关。在以往的研究中,人们根据水通道蛋白晶体结构的水道分析,提出“盖帽”以及“挤压”门控机制。其中AqpZ为典型的“挤压”门控机制代表。在AqpZ同源四聚体的晶体结构模型中,R189侧链存在“朝上”和“朝下”两种不同构象,进一步分子动力学模拟发现R189侧链能够上下快速摆动。R189残基被认为是AqpZ的水道门控开关,它通过侧链上下摆动,改变附近水道直径大小从而控制水道开关。 膜蛋白的结构和功能状态对环境影响敏感,细微的环境变量都可能造成膜蛋白结构和分子机制认识的偏差。在晶体环境中AqpZ的R189侧链的不同构象分布可能来自R189的不同功能状态或者环境因素偏差,因此在天然磷脂膜环境中,AqpZ蛋白的R189侧链门控分子机制值得探究和验证。 在该项研究工作中,研究人员首先通过化学位移分布以及偶极耦合常数测量证实AqpZ的R189侧链在磷脂膜环境只存在一种稳定的刚性状态,不具有大幅度的运动。然后通过CS-Rosetta手段计算出AqpZ在磷脂膜环境中的三维结构模型,发现R189侧链胍基和A117残基羰基形成稳定的H键,将R189侧链稳定在朝上“打开”状态。最后通过蛋白水分子交换常数测量,验证了R189侧链朝上“打开”分布的合理性。通过AqpZ的结构、动力学以及水分子交换常数分析,证实了AqpZ在功能活性状态下R189侧链朝上稳定分布,处于永久“开放”状态。这项工作提出了水通道蛋白研究中全新的门控分子机制,加深了水通道蛋白的认识,同时也强调了研究环境对膜蛋白分子机制研究的重要性。 这项工作得到了科技部、国家自然科学基金委和中国科学院的基金资助。新加坡国立大学教授林青松、美国强磁场中心博士傅日强、美国NIH糖尿病消化与肾病研究所博士沈杨、武汉物数所研究员郑安民参与了这项研究工作。
  • 《蛋白酰化修饰调控天然产物生物合成研究取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-24
    • 近期,中国科学院上海药物研究所谭敏佳课题组与华东理工大学叶邦策课题组合作研究,揭示了蛋白赖氨酸酰化修饰在天然产物的生物合成代谢通路中的调控新机制,研究工作发表在8月Cell Chemical Biology(25(8): 984-995. doi: 10.1016/j.chembiol.2018.05.005)和5月ACS Chemical Biology(13(5):1200-1208. doi: 10.1021/acschembio.7b01068)杂志上。 细胞重要中间代谢产物酰基-CoA类化合物,作为供体直接参与生物体内的蛋白酰化修饰,从而调控多种重要生物学过程,如表观遗传、能量代谢、精子发育等,是目前生命科学研究的热点之一。在生物体次级代谢产物生物合成过程中,酰基-CoA扮演的角色一直被认为是聚酮类、生物碱类、脂肪酸类及异戊二烯类等多种重要天然产物的合成前体,然而目前人们对其作为酰化修饰供体调控次级代谢产物合成过程的作用认知明显不足。 两篇文章分别以丙酰-CoA依赖性的大环内脂类红霉素、丙二酰-CoA依赖性的多酚类赤松素以及丁酰-CoA依赖性的丁醇生物合成过程中,丙酰化修饰、丙二酰化修饰以及丁酰化修饰为研究对象,通过蛋白质组学技术系统性解析蛋白酰化修饰在不同化学骨架类型的天然产物生物合成过程中的形成机制及调控功能。证明了生物体内高浓度酰基-CoA的积累在有助于补充产物合成前体的同时,也会造成蛋白酰化修饰引起的反馈调控,导致关键酶受到抑制并影响产物产率。这种由于胞内代谢物浓度的“过载”引起生物体代谢失衡的状态,广泛存在于多种不同化学骨架类型天然产物生物合成过程中,并存在于内源性产物合成途径和人工构建产物合成途径中。此外,进一步的研究表明,基于酰化修饰底物和修饰酶的翻译后修饰代谢工程策略(PTM_ME),如保护修饰位点、优化修饰酶系统等,有助于缓解胞内碳流“过载”的压力,相对提高目标产物产量。 这两项研究工作首次揭示了蛋白酰化修饰在次生代谢产物生物合成调控中的普遍性,并为代谢工程提供了从翻译后修饰水平改造的全新策略。 谭敏佳和叶邦策为两篇文章的共同通讯作者,上海药物所博士后徐骏宇和华东理工大学博士生徐娅在两位老师的指导下合作完成该项目。参与这项工作的还有上海药物所叶阳课题组和芝加哥大学教授赵英明。此外,该项目受到国家自然科学基金委重大研究计划、面上项目、国家重点研发计划“精准医学研究”重点专项和中国博士后科学基金的支持。