《线粒体同源膜融合机制研究取得新进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2016-12-08
  • 2016年11月14日,《Journal of Cell Biology》杂志在线发表了饶子和院士课题组和胡俊杰课题组合作的研究文章,题为“Structures of human mitofusin 1 provide insight into mitochondrial tethering”。该研究阐述了线粒体融合素(mitofusin, MFN)介导线粒体外膜融合的结构基础,并提出了MFN介导线粒体的膜拴连需要GTP水解的分子机制。

      线粒体是高度动态变化的细胞器,在细胞内不断地进行分裂和融合。MFN家族蛋白位于线粒体外膜,是一类发动蛋白(dynamin)超家族成员,在介导线粒体同源膜融合过程中发挥重要作用,MFN1或2的缺失导致小鼠胚胎致死,MFN2的突变与人类的神经退行性疾病CMT2A有密切关联,但是MFN的作用机制还知之甚少。遗憾的是,MFN虽已被发现近二十年,但由于难以表达纯化,其机制研究一直没有进展。

      饶子和院士清华大学课题组在系统筛选了MFN1截短体后,成功纯化解析了MFN1-MGD结合 GDP的晶体结构。MGD为最小GTP酶结构域的简称,其分子构架包括了人源MFN1原先预测的GTP酶,以及C端尾部的一个α 螺旋。胡俊杰课题组进一步从生化和细胞层面分析了结构信息,发现由GTP酶的延伸段和C端尾部形成的螺旋束(HB)的稳定是保证酶活的重要条件。 MGD可以结合水解GTP,并介导二聚体的形成。然而,MFN的核苷酸结合位点较为狭窄紧凑,对核苷酸类似物较为敏感,且不容易容纳镁离子。此外,连有跨膜区的MGD可以在GTP的存在下在体外介导膜拴连,但免疫共沉淀实验显示,C端尾部单独存在时,并没有产生像2004年其他研究组报道的分子间同源互作。这些结果证明 MFN1极有可能通过依赖GTP的二聚化介导膜融合所需的膜拴连,而并非像领域内之前普遍认为的C端尾部拴连模型。

相关报告
  • 《金纳米颗粒融合生长的理论机制取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-02-20
    • 金属纳米颗粒在能量转换、催化、生物成像和传感器等领域具有广泛的应用价值。金属纳米颗粒的融合生长普遍存在于纳米颗粒的结晶和自组装过程中,对于操控纳米颗粒的结构具有独特的优势和应用潜质。近日,中国科学院上海高等研究院高嶷课题组在水溶液中金纳米颗粒的融合生长机制的理论研究方面取得新进展,相关结果发表于《物理评论快报》(Physical Review Letter,2020,124,066101) 近年来,纳米科学领域关注的焦点正在从尺寸和形状均匀的单组分纳米颗粒转向具有增强性能和多功能性的多组分纳米颗粒,合成反应的复杂性的增加迫切需要对纳米颗粒的生长机制具有深入的研究。受限于目前实验无法观测到融合生长过程中纳米颗粒间接触界面的结构变化,包括表面原子、配体以及溶液,融合生长的内在物理机制仍有待被阐述。 目前普遍认为水溶液中金属纳米颗粒表面配体垂直站立,阻止金属内核接触融合,所以只有颗粒间接触面上的配体完全脱落之后融合生长才能发生。然而配体的脱落需要相对较高的温度并且会引起金属内核的严重变形,该观点无法解释实验中常温下巯基保护的金纳米颗粒的自发融合生长。上海应用物理研究所的郭盼博士在高嶷研究员(上海高等研究院)指导下,运用分子动力学模拟研究,提出了水溶液中巯基羧酸修饰的金纳米颗粒不需要配体脱落的融合生长机制。首先疏水相互作用促使配体包裹金纳米颗粒,同时配体之间的疏水相互作用主导纳米颗粒形成聚集状态。然后没有完全被配体覆盖的表面金原子发生接触,接触界面的原子以局部重排的方式把带配体的金原子排出到接触面以外实现完全的融合生长。该机制为金属纳米颗粒的合理设计和可控合成奠定了基础。 该项研究工作得到了国家自然科学基金委、中国博士后科学基金、国家超级计算广州中心、天津中心、上海超级计算中心的共同资助和支持。 水溶液中巯基羧酸修饰的金纳米颗粒的融合生长机制示意图  
  • 《昆明植物所在小分子促进线粒体融合并修补线粒体损伤的新机制研究中取得进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-11
    • 粉花绣线菊复合群包含七个变种,为我国特有。在早期的化学与生物学研究基础上,中国科学院昆明植物研究所郝小江团队开展了其特征性二萜及二萜生物碱的生物功能挖掘,相继揭示了部分化学成分可促进线粒体融合、特异性抑制Wnt信号通路、通过非Bax/Bak依赖的线粒体途径诱导细胞凋亡、抑制原癌基因Fli-1表达等新颖作用机制。日前,与南开大学陈佺团队、中国科学院生物物理研究所胡俊杰团队合作,在 Nature Chemical Biology 以长文(Article)形式在线发表题为Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction的研究论文,该研究报道了绣线菊二萜生物碱的一种衍生物S89能够特异性激活线粒体融合蛋白MFN1并修补多类线粒体损伤。该研究被Science作为研究热点予以报道。   线粒体是调控细胞能量稳态和命运决定的中心,可通过不断融合和分裂维持其正常功能,其中线粒体融合蛋白1(MFN1)和MFN2是介导线粒体外膜融合的动力蛋白样GTP酶。而线粒体分裂与融合失衡导致的过度碎片化是人类诸多疾病与衰老的重要标志之一,如MFN2的突变导致腓骨肌萎缩症(CMT2A)等多种遗传性神经退行性疾病。   该研究以线粒体融合的筛选体系为基础,合成并筛选了数十个该类衍生物,发现S89可直接靶向MFN1,并通过MFN1而不是MFN2促进GTP水解和线粒体融合。S89分子通过缓解MFN1自身抑制作用,并在MFN2缺陷时增强内源性MFN1的活性,从而恢复CMT2A患者来源细胞的线粒体功能。S89还通过防止线粒体损伤保护小鼠心脏组织免受缺血/再灌注损伤。因此,促进线粒体融合的小分子化合物将有助于治疗线粒体相关疾病,如代谢、免疫和神经系统疾病等,是生命科学和生物医学研究备受关注的前沿方向。   南开大学陈佺教授,中国科学院生物物理研究所胡俊杰研究员,中国科学院昆明植物所郝小江院士为本文共同通讯作者。陈佺团队的郭英杰博士,胡俊杰团队的张欢博士、沈璧蓉博士,郝小江团队的晏晨博士为本文共同第一作者。研究工作得到国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项(B类)、中国科学院稳定支持基础研究领域青年团队计划等的支持。