《制造超薄电脑芯片的新材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2020-07-14
  • 越来越小,越来越紧凑——这是计算机芯片的发展方向,由工业驱动。这就是为什么所谓的2D材料被认为是最大的希望:它们尽可能薄,在极端情况下,它们只包含一层原子。这使得生产具有微小尺寸、高速和最佳效率的新型电子元件成为可能。

    然而,有一个问题:电子元件总是由一种以上的材料组成。2D材料只有与合适的材料体系(如特殊的绝缘晶体)结合,才能得到有效利用。如果不考虑这一点,2D材料应该提供的优势是无效的。来自维也纳大学电气工程学院的一个团队正在《自然通讯》杂志上发表这些发现。

    在原子尺度上达到线的末端

    “今天的半导体工业使用硅和硅氧化物,”维恩大学微电子研究所的Tibor Grasser教授说。“这些材料具有非常好的电子性能。很长一段时间以来,这些材料的薄层被用来使电子元件小型化。这种方法在很长一段时间内都很有效,但在某种程度上,我们达到了自然极限。”

    当硅层只有几纳米厚,以致只有几个原子层时,材料的电子性能就会严重恶化。“材料的表面表现与材料的主体不同——如果整个物体实际上只由表面组成,而不再有主体,它可以拥有完全不同的材料属性。”

    因此,要想制造出超薄的电子元件,就必须改用其他材料。这就是所谓的2D材料发挥作用的地方:它们将优良的电子特性与最小的厚度结合在一起。

    薄层需要薄绝缘体

    “然而,事实证明,这些2D材料只是故事的前半部分,”Tibor Grasser说。“这些材料必须被放置在合适的基板上,并且在其之上还需要一层绝缘层——而且这种绝缘层必须非常薄并且质量非常好,否则你从2D材料中什么也得不到。”这就像开着一辆法拉利在泥泞的地面上,想知道为什么你不能创造一个速度记录。”

    因此,在Tibor Grasser和Yury Illarionov附近,TU Wien的一个团队分析了如何解决这个问题。“工业上通常用作绝缘体的二氧化硅在这种情况下并不合适,”Tibor Grasser说。“它有一个非常无序的表面和许多自由的,不饱和键,干扰了二维材料的电子性质。”

    最好是寻找一种有序的结构:该小组已经用含有氟原子的特殊晶体取得了优异的结果。带有氟化钙绝缘体的晶体管原型已经提供了令人信服的数据,其他材料仍在分析中。

    “新的2D材料正在被发现。这很好,但是根据我们的研究结果,我们想要表明仅靠这一点是不够的,”Tibor Grasser说。“这些新型导电2D材料还必须与新型绝缘体结合。只有这样,我们才能真正成功地生产出新一代高效、强大的微型电子元件。”

相关报告
  • 《可用于更薄计算机芯片的新材料》

    • 来源专题:后摩尔
    • 编译者:shenxiang
    • 发布时间:2020-07-15
    • 越来越小,越来越紧凑——这是工业驱动下计算机芯片的发展方向。这就是为什么所谓的二维材料被认为是最大的希望:它们尽可能薄,在极端情况下,它们只由一层原子组成。这使得生产出尺寸小、速度快、效率最优的新型电子元件成为可能。 然而,有一个问题:电子元件总是由一种以上的材料组成。二维材料只有与合适的材料系统(如特殊的绝缘晶体)结合,才能有效地使用。如果不考虑这一点,二维材料本应提供的优势就失效了。来自奥地利维也纳技术大学电子工程学院的一个团队将这些发现发表在《自然通讯》杂志上。 达到原子尺度上的终点 “今天的半导体工业使用硅和氧化硅,”TU Wien微电子研究所的Tibor Grasser教授说这些材料具有很好的电子性能。在很长一段时间里,这些材料被用来使电子元件小型化。这在很长一段时间内效果很好,但在某些时候我们达到了一个自然极限”。 当硅层只有几纳米厚,以至于它只由几个原子层组成时,材料的电子性能就会严重恶化。”材料表面的行为与材料的体积不同,如果整个物体实际上只由表面组成,而不再有体积,那么它可能具有完全不同的材料属性。” 因此,为了制造超薄的电子元件,人们不得不换用其他材料。这就是所谓的二维材料发挥作用的地方:它们结合了优良的电子性能和最小的厚度。 薄层需要薄绝缘体 “然而,事实证明,这些2D材料只是故事的前半部分,”Tibor Grasser说材料必须放置在适当的基板上,并且在其上还需要一个绝缘体层-而且这种绝缘体还必须非常薄并且质量非常好,否则你从2D材料中什么也得不到。这就像在泥泞的地面上开着法拉利,不知道为什么没有创下速度纪录。” 因此,在蒂博·格拉瑟和尤里·伊拉里昂诺夫周围的图温研究小组分析了如何解决这个问题。”通常工业上用作绝缘体的二氧化硅在这种情况下并不适用它有一个非常无序的表面和许多自由的,不饱和的键,干扰了二维材料的电子性质。” 最好是寻找有序的结构:研究小组已经在含有氟原子的特殊晶体上取得了出色的成果。一个带有氟化钙绝缘体的晶体管原型已经提供了令人信服的数据,其他材料仍在分析中。 “目前正在发现新的二维材料。“这很好,但是根据我们的研究结果,我们想证明光靠这一点是不够的,”TiborGrasser说这些新型导电二维材料还必须与新型绝缘体结合。只有这样,我们才能真正成功地生产出新一代高效、功能强大的微型电子元件”。 论文信息:Insulators for 2D nanoelectronics: the gap to bridge,Nature Communications volume 11, Article number: 3385 (2020) 。 论文下载链接:https://www.nature.com/articles/s41467-020-16640-8
  • 《院士称“芯片之争”就是材料之争》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-23
    • “新材料是制造业和武器装备高质量发展的前提。近几年来,我国材料科技发展迅速,但高水平材料产业化有待进一步发展,高端材料的技术壁垒日趋呈现。”在近日举行的中国科学院深圳先进技术研究院先进电子材料研究所(筹)成立揭牌仪式上,中国工程院院士、中国工程院原副院长干勇谈及“卡脖子”问题时呼吁,科研人员应在材料问题上率先突破。 干勇说,集成电路制造业能力不足,缺少核心技术是我国目前面临的主要问题。2017年我国服务器销售约255万台,其中98%以上是X86服务器,尽管华为、曙光等国产厂商占据了主要整机份额,但硬件材料成本的85%以上来自国外供应商。一方面技术受制于人,另一方面整机厂商毛利极低,处理器、内存等供应商赚走了高额利润。国产CPU虽然达到或接近国际先进水平,但工艺较国际先进水平差距较大。 他话锋一转说,“芯片之争就是材料之争,对‘卡脖子’材料的突破迫在眉睫!” 据介绍,当天成立的先进电子材料研究所就将承担深圳先进电子材料国际创新研究院的建设。中国科学院深圳先进技术研究院院长、中国科学院大学博士生导师樊建平透露,先进电子材料研究所将以5G通讯发展为引擎,以人工智能、高端通讯与物联网应用为双翼,围绕先进电子材料的研究与产业化进行攻关,重点布局5G通讯的关键电子材料。 来自中国科学院深圳先进院的信息显示,先进电子材料研究所将下设热管理与散热材料研究中心、晶圆级封装关键材料研究中心、前瞻性研究中心共3个研究中心,以及芯片级封装关键材料研究室、电磁屏蔽材料研究室、介质材料研究室、材料器件模拟仿真研究室共4个研究室。该所战略指导咨询委员会主任由干勇担任。