《Nature | 人类去甲肾上腺素转运蛋白再摄取与抑制分子基础》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-07-26
  • 2024年7月24日,清华大学生命科学学院/北京生物结构前沿研究中心闫创业/袁亚飞团队在 Nature 期刊发表了题为Molecular basis of human noradrenaline transporter reuptake and inhibition的研究论文。

    MAT属于神经递质钠同向转运蛋白(NSS)家族成员,其利用膜外/内钠离子Na+的浓度梯度来完成对神经递质的同向跨膜运输,这一过程可能依赖于氯离子Cl-同向转运以及钾离子K+的反向转运。近年来对MAT中底物转运及抗抑郁药物调节机制的研究进展迅速,其中果蝇多巴胺转运蛋白dDAT和人源血清素转运蛋白SERT的不同构象以及与多种抗抑郁药物分子结合的结构已经得到解析。但关于人源去甲肾上腺素转运蛋白NET的结构研究相对进展缓慢,这大大阻碍了抗抑郁药物的进一步优化和开发。

    该研究团队提出了NET的转运过程模型。在向外开放的构象中,Na+、Cl-和底物NE与中央口袋结合,启动NET的闭合,进入闭合状态。在这个转变过程中,第二个底物可以提前结合到新形成的膜外S2位点中。随后,TM1a的打开(向内开放构象的标志特征)促进底物与两个Na+一起从中央口袋释放。在转变回向外开放构象的过程中,S2位点的局部结构将受到破坏,导致S2位点处底物的释放。释放的底物可能直接进入到中央口袋,开始下一个转运循环。这一过程与两个Na+离子和一个Cl-离子进入细胞质以及可能一个K+离子进入细胞外基质的转运耦合。而不同类别的抗抑郁药物占据S1位点阻碍底物转运。

    总之,该研究通过结构生物学和生物化学方法阐明了去甲肾上腺素转运体(NET)转运底物去甲肾上腺素(NE)和多巴胺(DA)的机制,首次报道了NET中的第二个底物结合位点和NSS家族的钾离子结合位点,揭示了四种不同类别的常用上市抗抑郁药物的选择性抑制机制,为进一步开发靶向单胺类神经递质转运蛋白(MAT)的药物奠定了基础。

  • 原文来源:https://www.nature.com/articles/s41586-024-07719-z
相关报告
  • 《Nature:科学家在单分子水平下成功理解细胞转运蛋白的工作机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-02
    • 就能一艘能够帮助乘客过河的船一样,转运蛋白(transporters)能运输物质跨越细胞膜,这一过程对于从细菌到人类等多种有机体细胞的健康功能至关重要,此前研究人员仅能通过与这些转运蛋白一起发挥作用的成百上千个转运蛋白的行为中推断出其功能,近日,一项刊登在国际杂志Nature上的研究报告中,来自圣犹大儿童研究医院等机构的科学家们通过研究开发了一种新技术,其能在单分子水平下对转运蛋白的功能和工作机制进行研究。 研究者Scott Blanchard博士表示,通过观察单分子水平下的活性,我们就能够阐明转运蛋白活性背后的部分机制,这对于后期进行该家族中许多临床相关蛋白的研究至关重要。这项研究依赖于一种名为单分子荧光共振能量转移(smFRET,single-molecule fluorescence resonance energy transfer)的技术,其能帮助研究人员收集来自单一转运蛋白活性的精确测定数据,同时该技术还是研究疾病作用机制和突变发生机制的有力工具,其能在全球少数实验室中使用。 此前的单分子技术仅能测定所谓的“离子通道”的活性,这种离子通道能允许带电颗粒穿过细胞膜。这些单分子方法能够彻底改变研究人员对离子通道的理解,但由于其运输物质的多样化及相对较慢的运输速率,这种新型的smFRET技术则能更加高效地对多种转运蛋白进行研究。 神经递质-钠协同转运蛋白(NSS,Neurotransmitter: sodium symporters)是一种转运蛋白家族,其在大脑中尤为突出,能将分子运输到细胞内外;在人类机体中,用于运输神经递质去甲肾上腺素和血清素的NSS能作为几乎所有抗抑郁症药物开发的靶点,而负责运输多巴胺的NSS则是苯丙胺和可卡因的关键靶点;理解这类蛋白及其发挥功能的机制对于研究人员开发新型疗法并理解药物蓝用的机制至关重要,同时还能帮助改善靶向作用这些转运蛋白的疗法的作用效率。 随后研究人员利用smFRET来研究细菌中NSS蛋白的亲属:MhsT转运蛋白,其能运输氨基酸跨越细胞膜,研究人员想通过研究理解转运过程中最缓慢的部分,即速率限制步骤(stp-limiting step),研究人员惊讶地发现,MhsT转运蛋白的限速步骤对于不同的“货物”是不同的。 为了运输分子跨越细胞膜,转运蛋白必须改变形状,使其既能捡起细胞外的物质,也能在细胞内释放物质,研究者发现,循环过程中最缓慢的部分是将形状转变回细胞外部的过程,此时转运蛋白被认为是空载了一部分“货物”。研究者Jonathan Javitch博士表示,由于不同的货物拥有不同的缓慢步骤,研究结果表明,“返回”的步骤或许并不是空的,这就与与转运蛋白上的次级结合位点的其它证据相吻合,这或许才是调节转运蛋白活性的关键。 最后研究者表示,更好地深入理解NSS蛋白家族中次级结合位点的功能相关性或能帮助研究靶向作用这些转运蛋白的药物的药理学作用机制和效率。
  • 《深层地下细菌蛋白抑制甲烷水合物生长的分子基础研究》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-12-06
    • 大陆边缘甲烷水合物储存了地球上最大的碳氢化合物,但生物分子在水合物形成和稳定中的作用还有待研究。乔治亚理工学院在富含甲烷水合物沉积物微生物宏基因组中,发现了细菌来源的甲烷水合物结合蛋白(CbpAs),揭示了一种新的蛋白质支架和抑制气体水合物的分子机制。研究显示细菌CbpA3是一种选择性气体水合物抑制剂,比I型抗冻蛋白更有效,在效力和生成笼状物形态上与高分子聚乙烯吡咯烷酮旗鼓相当。CbpA中的txxxxxxaxx基序具有结构完整性功能而不具备促进水合物聚合功能。研究认为来自海洋沉积物的细菌Cbpa有望作为高分子聚乙烯吡咯烷酮的环保替代品,并表明细菌生物分子可能影响气体水合物的稳定性,对水合物解离具有重要影响。(熊萍 编译)