《Nature | 发现脂蛋白(a)形成的强效小分子抑制剂》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-05-10
  • 2024年5月8日,美国礼来研究实验室的研究人员在Nature上发表了一篇题为Discovery of potent small-molecule inhibitors of lipoprotein(a) formation的文章。

    脂蛋白(a)(Lp(a))是一种由基因决定的独立心血管风险因素,不能通过改变生活方式来改变,而且目前没有任何治疗剂可以专门降低Lp(a)的水平同时不产生其他影响。具体而言,Lp(a)是一种脂蛋白颗粒,通过两步过程形成,包括低密度脂蛋白(LDL)颗粒和载脂蛋白(a)(apo(a))之间的相互作用。在第一步中,apo(a)通过独特的KIV5–8的结构元件与位于LDL颗粒上的apoB-100中富含赖氨酸的区域非共价结合,其赖氨酸结合位点与apoB的赖氨酸配位残基同源。在第二步中,在apo(a)的KIV9的未配对Cys67残基和apoB-100的Cys3734之间形成二硫键,从而共价连接这两种蛋白质。

    不幸的是,目前,临床实践中还没有专门降低Lp(a)水平的治疗方法。甚至到目前为止,还没有在人类身上进行研究的专门针对apo(a)的小分子;然而,在一项小型临床研究中人们还是发现了纤溶酶原抑制剂氨甲环酸可降低Lp(a)的水平。

    该研究发现apo(a)KIV7–8与小分子的相互作用可抑制Lp(a)形成的第一步过程。为此,作者鉴定了可与apo(a)KIV7–8结合的化合物,并通过化学优化和多价性的进一步应用,创造了具有亚纳米效力的化合物,用于抑制Lp(a)的形成。研究显示,口服剂量的原型化合物和强效多价干扰物LY3473329(muvalaplin)可降低转基因小鼠和食蟹猴的Lp(a)水平。尽管多价分子与大鼠纤溶酶原的Kringle结构域结合并降低纤溶酶活性,但纤溶酶原序列的物种选择性差异表明,抑制剂分子会降低人类中Lp(a)的水平,但不会降低纤溶酶原的水平。这些数据支持了LY3473329的临床开发——它已经处于2期研究中——作为一种强效和特异性的口服制剂,用于降低Lp(a)水平。

  • 原文来源:https://www.nature.com/articles/s41586-024-07387-z
相关报告
  • 《Nature | 化学蛋白质组学发现WRN螺旋酶的共价变构抑制剂》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-27
    • 2024年4月24日,美国Vividion Therapeutics的研究人员在Nature杂志发表了题为Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase的文章。 WRN螺旋酶是治疗微卫星不稳定(MSI)癌症的一个前景广阔的靶点,因为它在解决错配修复机制失效的细胞中积累的有害非规范DNA结构方面发挥着至关重要的作用。目前还没有直接针对人类 DNA 或 RNA 螺旋酶的获批药物,部分原因是开发针对这类蛋白的强效选择性化合物具有挑战性。 该研究介绍了通过化学蛋白质组学发现的处于临床阶段的 WRN 共价异位抑制剂 VVD-133214。这种化合物可选择性地与位于螺旋酶结构域区域的半胱氨酸(C727)结合,该区域在 DNA 解旋过程中会发生结构域间移动。VVD-133214 与核苷酸协同结合 WRN 蛋白,稳定了缺乏适当螺旋酶功能所需的动态灵活性的紧凑构象,导致 MSI-高(MSI-H)细胞(而非微卫星稳定细胞)出现广泛的双链 DNA 断裂、核肿胀和细胞死亡。该化合物在小鼠体内耐受性良好,在多个MSI-H结直肠癌细胞系和患者衍生异种移植模型中可导致肿瘤的显著消退。 该工作显示了一种抑制 WRN 功能的异构方法,它可以规避癌细胞中内源性 ATP 辅因子的竞争,并将 VVD-133214 定义为治疗 MSI-H 癌症患者的一种有前途的候选药物。
  • 《发现一种广谱的CRISPR/Cas9抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-12-18
    • 如果说CRISPR复合物听起来很熟悉,那是因为它们是新一波基因组编辑技术的最前沿。CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(clustered regularly interspaced short palindromic repeats)的简称,涉及细菌基因组中的独特DNA区域,也是储存病毒DNA片段从而允许细胞能够识别任何试图再次感染它的病毒的地方,CRISPR经转录产生的RNA序列(被称作crRNA)识别入侵性病毒的遗传物质。Cas是CRISPR相关蛋白(CRISPR-associated proteins, Cas)的简称,Cas蛋白像一把分子剪刀那样切割细菌基因组上的靶DNA。科学家们已发现他们能够利用CRISPR降解病毒RNA的天然能力,并且使用CRISPR系统从几乎任何一种有机体中移除不想要的基因。 目前已在细菌中发现三类CRISPR/Cas系统,I型和III型系统需要众多蛋白的参与。II型系统就简单得多了,一个Cas9核酸酶利用向导RNA(gRNA)就可以完成识别和切割靶双链DNA,因此II型系统也被称作CRISPR/Cas9系统。 在细菌的免疫系统中,CRISPR-Cas9的作用是靶向结合和摧毁侵入性的DNA,并且被作为一种稳健的基因组编辑技术加以使用。噬菌体编码的小分子抗CRISPR蛋白(anti-CRISPR proteins, Acr)能够让Cas9酶失活,从而为基于Cas9的应用提供一种高效的关闭开关。 在一项新的研究中,来自美国加州大学伯克利分校、马萨诸塞大学医学院、哈佛医学院和加拿大多伦多大学的研究人员证实两种Acr蛋白,即AcrIIC1和AcrIIC3,利用不同的策略抑制Cas9。相关研究结果发表在2017年9月7日的Cell期刊上,论文标题为“A Broad-Spectrum Inhibitor of CRISPR-Cas9”。 AcrIIC1是一种广谱Cas9抑制剂,通过直接结合到Cas9的保守性HNH催化结构域上,阻止多种有差异的Cas9直系同源物切割DNA。AcrIIC1-Cas9 HNH结构域复合体的晶体结构展示了AcrIIC1如何将Cas9限制在一种DNA结合的但是没有催化活性的状态。相反,AcrIIC3阻断单个Cas9直系同源物的活性,诱导Cas9形成二聚体,从而阻止Cas9结合到靶DNA上。 这两种不同的机制允许独自地控制Cas9的靶标DNA结合和切割,而且也为开展允许Cas9结合到靶DNA上但阻止它切割DNA的应用铺平道路。