来自材料牛
导读
锂-硫(Li-S)电池经历了一个16电子反应,将硫转化为一系列具有可变链长的锂硫化物(LiPSs)。其中,三分之四的容量主要由可溶性Li2S6到固态Li2S的反应贡献。在这个过程中,LiPSs物种的高溶解度以及Li2S2/Li2S的绝缘性质会导致活性材料的持续损失和严重的容量退化。已经提出了许多策略来增加能量密度和循环稳定性,如硫载体的结构调整、分离膜、电解质等。然而,这些材料设计背后的基本原则仍然不太清楚。例如,是什么限制了缓慢的反应动力学的速率限制步骤,阻碍了快速充电的Li-S电池的发展?活性中心在电极-电解质界面如何保持活跃以催化LiPSs?
为了研究锂-硫(Li-S)电池的电化学反应,研究人员使用了原位表征技术,包括X射线衍射(XRD)、X射线吸收近边结构(XANES)、核磁共振和拉曼光谱等。这些技术可以提供有关反应中间体/产物的具体化学/结构信息;但是,它们主要获取来自电解质和电极的混合信号的统计信息,从而对LiPSs的界面反应动力学的理解有限。由于高时空分辨率的优势,原位透射电子显微镜(TEM)可以在原子/单分子尺度上追踪动态反应。目前,开放式电池配置几乎无法避免在高真空环境下中硫的自发升华,并且以前报道的液体电池配置是由电子束(驱动而不是电场,因此在研究过程中不可避免地容易受到束流损伤。上述原位TEM研究尚未揭示液体电解质中的现实电化学氧化还原反应。
在这里,我们在液体电池内构建了一个Li-S纳米电池,并结合电化学透射电子显微镜(EC-TEM),在醚类电解质内实现了对电极表面LiPSs演变的高分辨率实时观察。我们的研究表明,活性中心将可溶性LiPSs聚集成类似液滴的密集相,并引发了非平衡纳米晶/无定形Li2S的瞬时沉积,而不是传统的逐步转化。密度泛函理论(DFT)计算和分子动力学(MD)模拟指出,聚集诱导的相变是由于活性中心与LiPSs液滴状密集之间的远程静电相互作用和集体电荷转移行为而导致的。
成果掠影
由于高能量密度和低成本,锂-硫(Li-S)电池被认为是先进能源存储系统的有希望的候选者。尽管在抑制锂硫化物长期存在的“穿梭效应”方面付出了巨大努力,但在纳米尺度上理解锂硫化物的界面反应仍然难以捉摸。鉴于此,中国厦门大学和美国伊利诺伊大学科学家使用原位液体电池电化学透射电子显微镜,直接可视化了锂硫化物在电极表面的原子尺度转化。值得注意的是,我们捕捉到了锂硫化物在纳米团簇活性中心固定表面上发生的出乎意料的聚集诱导的集体电荷转移。它进一步导致了从浓密的锂硫化物液相瞬间沉积出非平衡的Li2S纳米晶体。在没有活性中心的介入的情况下,反应遵循了经典的单分子途径,锂硫化物逐步转化为Li2S2和Li2S。分子动力学模拟表明,活性中心与锂硫化物之间的远程静电相互作用促进了由Li+和Sn2?(2 < n ≤ 6)组成的密集相的形成,密集相中的集体电荷转移也被从头分子动力学模拟所验证。这种集体界面反应路径揭示了一种新的转化机制,深化了对Li-S电池的基本理解。相关研究成果以“Visualizing interfacial collective reaction behaviour of Li–S batteries”为题,发表在顶级期刊《Nature》上。
核心创新点
本文的核心创新点是通过原位液体电池电化学透射电子显微镜成功可视化了锂硫化物在电极表面的原子尺度转化,揭示了锂-硫电池中的集体界面反应路径,深化了对其工作机制的理解。
成果启示
在锂-硫(Li-S)电池的多电子反应中,涉及到LiPSs中间体与活性中心之间的吸附、催化和转化,而支配Li2S沉积/溶解的反应动力学的复杂性导致了多样且模糊的反应途径。在这项研究中,通过使用高时空分辨率的原位电化学透射电子显微镜(EC-TEM),我们展示了活性中心将可溶性LiPSs聚集成类似液滴的密集相,从而诱导了瞬时的晶化,而不是经典的逐步转化。此外,我们的初步结果表明,集体反应机制似乎对其他金属活性中心也具有普遍性,需要进行更系统的研究。以前的材料/表面改性研究主要集中在从单分子角度阐明吸附和催化机制上。我们的实验和模拟结果表明,离子和分子的聚集状态和集体行为在电化学界面反应的动力学中起到了关键作用。这种集体机制为构建下一代高能量、长寿命和快速充电的Li-S电池提供了新的见解。
原文详情:
Zhou, S., Shi, J., Liu, S. et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 621, 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8.