《揭秘锂硫电池硫还原反应机理》

  • 来源专题:智能制造
  • 编译者: icad
  • 发布时间:2024-02-02

  • 2024年1月31日,美国加州大学洛杉矶分校段镶锋教授与Philippe Sautet教授课题组在 Nature 期刊上发表了一篇题为“Establishing reaction networks in the 16-electron sulfur reduction reaction”的最新成果。这项研究不仅揭示了Li-S电池中硫还原反应的复杂反应网络,也突显了电催化策略在解决锂硫电池核心挑战方面的潜力。
    锂硫(Li-S)电池被视为最具有吸引力的下一代能源存储设备之一,硫正极的理论容量高达1672 mAh g -1 。尽管科研工作者们已经投入了大量努力来改善Li-S电池的实际性能,但硫还原反应(SRR)的反应机理仍然是一个没有完全清晰结论的课题。SRR涉及复杂的从S 8 分子到Li 2 S固体的16电子多步转化过程,其中可能存在一系列交杂在一起的可溶性锂多硫化物(LiPS)中间体的分支反应。可溶性LiPS会在正极和负极之间穿梭,导致活性硫的损失和循环容量的迅速衰减。研究表明,电催化过程可以帮助加速多硫化物的转化动力学,减少多硫化物积累,抑制穿梭效应,而且多种电催化剂在改善电池性能方面已经显示出很大作用。然而,这些电催化剂在改变SRR机理中的确切作用仍然是一个未知数。全面理解SRR反应网络及电催化效应对反应机理的影响对于合理设计可以针对特定步骤的电催化剂至关重要,从而根本解决锂硫电池的多硫化物穿梭问题。
    文章作者系统地研究了电催化SRR以解析其反应网络,使用氮、硫双掺杂的多孔石墨烯(N,S-HGF)作为研究模型,了解电催化剂在加速硫转化动力学中的作用。结合循环伏安法、原位拉曼光谱和密度泛函理论计算,作者识别并确定了在不同电位下的关键中间体(S 8 ,Li 2 S 8 ,Li 2 S 6 ,Li 2 S 4 和Li 2 S)及其转换路径。Li 2 S 4 和Li 2 S 6 是主要观察到的中间体,其中Li 2 S 4 是控制整体SRR动力学的关键电化学中间体,而Li 2 S 6 虽然不直接参与电化学反应,但是是对穿梭过程贡献最大的多硫化物。研究发现,N,S-HGF作为电催化剂能显著提升SRR的效率,这种催化剂不仅加快了LiPS的转化动力学,还有助于在更高的电位下快速耗尽可溶性LiPS,从而有效缓解了多硫化物的穿梭效应,并提升了电池的输出电位。这些结果说明电催化可以作为解决Li-S电池核心问题的有效策略。

    图1:锂硫电池中涉及的多硫化物转化反应。

    图2:SRR的电荷分析和反应网络。

    图3:N,S-HGF催化电极放电过程中的原位拉曼结果。

    图4:SRR中不同催化剂的比较。


    图5:Li 2 S 4 ?→?Li 2 S转化的模拟位点特异性输出电位。
    文章将实验结果与理论计算相结合,深入理解了SRR中的反应机理,可为设计更高效的电催化剂和改善电池性能提供指导。(来源:科学网)
    相关论文信息:https://doi.org/10.1038/s41586-023-06918-4 .
  • 原文来源:https://paper.sciencenet.cn/htmlpaper/2024/2/202421931941494788.shtm
相关报告
  • 《揭秘比亚迪动力电池核心技术》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-04-17
    • 作为纯电动汽车最核心的零部件之一,动力电池对车辆的续航里程、整备质量、动力表现、操控性能等息息相关。在纯电动汽车的制造成本方面,电池的占比也最高,普遍在30%以上,这导致了电动汽车较高的售价以及后期维护成本。因此,降低电池的单位成本,以及增加电池的能量密度,一直是电动汽车技术发展的主要方向。 对原本就是以电池起家的比亚迪来说,高性能电池是比亚迪的杀手锏之一。尤其是在换装了能量密度更高、放电电压更高、低温性能更好的三元锂电池后,比亚迪EV车型系列的核心竞争力更是得到大幅提高。我们将对比亚迪秦Pro EV500车型的电池包进行全面拆解,并解析比亚迪所掌握的电池包安全设计、热管理设计等创新及管理技术。 方形铝壳集成工艺 在揭开电池包的超薄非金属上盖,以及二氧化硅气凝胶防火隔热层之后,我们可以清楚地看到电池包整体的布置结构,其中最直观可见的便是电池包的集成工艺。集成工艺在动力电池的研发中非常重要,必须满足机械防护、热安全防护、热管理、环境防护等全方面安全要求的前提下,追求轻量化及优化成本。与特斯拉所采用的圆柱型电芯方式不同,比亚迪采用了国内普及率更高的方形铝壳,具有能量密度高,集成难度低的优势。另外,方形的封装工艺,也有助于缩小电芯间的缝隙,让整体尺寸更加紧凑,而圆柱电芯必然要在电芯间留出三角形的空隙,降低了空间利用率。 镁铝合金材质打造的电芯壳体,与圆柱型电池所采用的不锈钢壳体相比,更轻成本更低,有利于提高电芯的能量密度,而且制造成本也更低。而且方壳的结构可以容纳更多电解液、电芯极片膨胀应力更低,电池寿命比圆柱形长2倍以上。 电池模组 秦Pro EV500采用了比亚迪自主研发的镍钴锰三元电池,也就是在钴酸锂基础上,经过改进,以镍钴锰作为电池正极材料,并合理配比镍钴锰的比例。在优化成本、保证安全的同时,使得电池具有容量高、热稳定性能好、充放电压宽等优良的电化学性能。 并且有效提高电池能量密度,达到160.9Wh/kg,结合56.4kWh的容量。实现NEDC续航里程420km,60km/h等速续航里程500km,从而有效缓解用户在续航里程方面的忧虑。并且得益于电池组的高能量密度,有效降低汽车的电池装载量,从而减轻汽车的自重。 电池模组的成组方式充分考虑到了散热和轻量化的需求,采用两侧铝制短板加弹性钢带捆扎的方式,自适应电池在充放电过程中的膨胀。同时多种规格的模组可以实现灵活的布局,适应不同车型的需要。在车体中部尽量扁平,单层布局,增加车内高度空间。 在细节设计上,主回路连接和它信号采集的部分使用了铝巴,在同样导电能力的情况下,重量相比使用铜材质可以降低一半以上,而且成本也能得到控制。 不过我们发现在引出极上采用了铜排而非铝排,这是因为铝排的硬度较低,在高温、高应力的情况下,铝会发生塌缩,并且塌缩之后不易回弹,一热一冷就会导致缝隙加大,接触电阻上升,带来安全隐患。 而在铜铝不同材质的连接上,比亚迪采用了一种叫做电磁脉冲焊的技术。相对于现在常用的铜铝直接碾压连接或超声波焊接技术,电磁脉冲焊的工艺难度比较大,虽然成本也会相应提高,但效果是最好的,是目前比较先进的技术。 在每一个电池极柱和极柱之间,也用激光把铝制汇流排和极柱熔焊在一起,保证可靠性。并且在汇流排上设计有一个凹陷,用来吸收机械振动以及电击膨胀带来的应力。而如果是直铝巴,随着电池的老化膨胀,相邻电池的极柱间距会增大,拉伸应力会影响焊点的可靠性。 在信号连接的部分,比亚迪采用了柔性电路板,相对于传统采样线束的方案,集成度更高,也更轻薄。如果仔细观察,会发现柔性电路板上有细丝状的布线,我们称之为采样线熔断线。它的作用是在碰撞时,可能会挤压采样线束造成短路,进而引起采样线起火,这些细丝便会在短路时由于过流而发生熔断,从而切断短路回路,确保整个线束的安全和电池模块的安全。 电池管理系统 由于采用了锂电池,为了保证电池始终处在一个比较合适的温度范围内进行工作,比亚迪为其配备了一套独立的电池智能温控管理系统,以确保动力电池在复杂的温度环境之下可以获得稳定可靠的性能。这套智能温控管理系统通过液体介质保温和降温,能有效保证电池温度均一性。 在冷却方式上,比亚迪在电池内增加了散热回路,通过板式换热器与空调回路相连,电池进出水和电池级耳处都布有温度传感器,结合电池温度实时调节空调压缩机的功率来控制电池进水温度及流量,以此来控制电池温度在适宜工作温度。 在加热方式上,比亚迪在电池散热回路里串联PTC水加热器,通过调节水加热器的功率,控制进水温度及流量,以此来控制电池在冬季也能工作在适宜温度,确保充电速度和放电动力性。 并且通过电池管理系统BMS,实时监测电池状态,对低温、过充、过放、过温等进行保护,从而延长电池寿命。当温度过低或过高时,会限制充放电功率,而当温度严重过低或过高时,会禁止充放电,从而保护电池。 蛇形水冷扁管 用来冷却以及加热的水道管路布置在不同电池模组的底部或者侧面,同时我们注意到,电池包中的水管采用了与特斯拉相同的口琴管,这种口琴管很薄,壁厚在0.8-1mm,相比于传统的壁厚为1.6-2mm的铝合金水管,重量上要轻不少。 比较有特色的是,秦Pro EV500上所采用的这种横向弯折蛇形设计相比于特斯拉,可以说是采用了同样的技术路线,但从工艺角度上讲更难,尤其是在弯曲部分的外圈,材料内外侧的拉伸率相差比较大,容易发生褶皱和裂纹,对材料以及工艺的要求非常高。 这样做的好处也是显而易见的,特斯拉管路是为了从侧面“包住”电池,但问题是圆柱形电池与散热管路的接触面几乎是一条直线,效率较差,这也是为什么在最新的21700(Model3采用)电池模组中采用了整体灌胶方式,只能牺牲“重量”换“热量”。比亚迪的管路设计与方形电池配合较好,管路完全贴在电池侧壁,最大化接触面积。 这种设计既保证了每块电芯都能被冷却到,同时相对于用整块铝板设计的冷却水道,实现了非常好的轻量化效果。这在整个行业上属于领先的技术,对比亚迪来说完成了一个挑战。 组装工艺 整个电池包在总装的过程中,对工艺的控制非常完美。特别是在每一个水冷管的连接点,每一个接插件的连接点,每一个高压电气的连接点,以及结构固定的点上面基本上都有两到三道确认。 举个例子,一些低压的接插件负责电池的信号采集,如果BMS系统丢失了单体电压信号或者单体温度信号,就不能继续可靠地工作,也就无法完全保证电池的安全。 一般的接插件只有一个锁扣,锁紧之后会有锁止声音作为提示。而比亚迪不仅有声音作为确认,同时还有一个副锁扣,只有一级锁扣接插到位时,才可以将副锁扣闭合,两级的锁止设计非常到位。 另外,高压电器的连接也是整个电池包组装中最核心最关键的一点,尤其是在主回路连接的可靠性和低内阻设计上。比亚迪的电池包在主回路的长距离连接上采用了耐高温的聚酰亚胺压封的铜排,并且设计了很多立体弯折,从而在受到振动,或是受热膨胀时,通过这些弯折来吸收长度的变化,避免将载荷转移到连接螺钉上。 虽然从接触内阻的角度来讲,单螺钉的接触内阻就满足发热要求。但比亚迪依然坚持用双螺钉的设计方案,从而大幅提高可靠性。而且在螺钉的拧紧确认上,我们发现有三种颜色的色标,这意味着进行了三遍确认。第一遍为自动拧紧轴拧紧,并打上红色标记,后两遍为人工利用扭矩扳手复检,分别打上黄色和白色标记。 另外,整个电池包内的大部分管线都采用了尼龙网状编制管套,特别是与电池包壳体及内部器件接触的管线,在保护线束,避免磨损的同时,也起到降低噪音的作用。 总结 总的来说,比亚迪秦Pro EV500在整个电池包的轻量化和可靠性上做了非常多的努力,并且通过改良电芯配比、优化电池管理系统以及主动热管理技术,提高电池的能量密度,从而提高车辆的动力、操控以及续航性能。 尤其是在安全性方面的设计上,比亚迪的工程师们考虑得更是细致,从而最大程度保护用户的行车安全。以上这些,都体现出比亚迪在电池研发领域所具有的技术优势以及发展空间,可以说引领了行业技术发展方向。
  • 《阴极化学的突破为更可持续的锂硫电池铺平道路》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-02-15
    • 美国对电动汽车(EVs)不断增长的需求揭示了可持续采购电池技术的重大挑战,这种技术是向可再生电力和远离化石燃料的广泛转变所必需的。为了使电池不仅比目前用于电动车的电池性能更好,而且还能用现成的材料制成,德雷塞尔大学的一组化学工程师已经找到了将硫磺引入锂离子电池的方法--结果令人震惊。 随着2021年全球电动车销量翻番,锂、镍、锰和钴等电池材料的价格飙升,这些原材料的供应链(大部分来自其他国家)也因大流行而陷入瓶颈。这也将注意力集中在原材料的主要提供者:刚果等国家;并提出了从地球上提取这些原材料对人类和环境影响的问题。 早在电动车激增和电池材料短缺之前,开发商业上可行的硫磺电池一直是电池行业的可持续、高性能的目标。这是因为硫磺的天然丰度和化学结构将使其能够储存更多的能量。德雷塞尔大学工程学院的研究人员最近在《通信化学》杂志上发表的一项突破,提供了一种避开过去压制锂硫电池的障碍的方法,最终将这项备受追捧的技术拉到了商业化的范围内。 他们的发现是一种生产和稳定罕见形式的硫的新方法,这种硫在碳酸盐电解质中发挥作用--商业锂离子电池中使用的能量传输液体。这一发展不仅会使硫磺电池在商业上可行,而且它们的容量将是锂离子电池的三倍,并可持续充电4000次以上--相当于使用10年,这也是一个实质性的改进。 领导这项研究的德雷塞尔大学化学和生物工程系乔治-B-弗朗西斯讲座教授Vibha Kalra博士说:“多年来,硫在电池中的应用一直非常理想,因为它是地球上丰富的资源,可以以安全和环保的方式收集,而且正如我们现在所证明的,它也有可能以商业上可行的方式改善电动汽车和移动设备的电池性能。” 将硫磺引入商业上友好的碳酸盐电解质的锂电池的挑战是中间硫磺产品(称为多硫化物)和碳酸盐电解质之间发生不可逆的化学反应。由于这种不良反应,以前尝试在碳酸盐电解质溶液的电池中使用硫磺阴极的结果是几乎立即关闭,并且在仅仅一个循环之后就完全失效。 锂硫(Li-S)电池已经在使用乙醚电解质--而不是碳酸盐--的实验环境中表现出卓越的性能,因为乙醚不会与多硫化物发生反应。但是这些电池在商业上是不可行的,因为乙醚电解质是高度挥发性的,其成分的沸点低至42摄氏度,这意味着任何高于室温的电池升温都可能导致故障或熔化。 Kalra说:“在过去十年中,大多数锂硫领域采用了醚类电解质以避免与碳酸盐发生不良反应。然后多年来,研究人员通过缓解所谓的多硫化物穿梭/扩散,深入研究如何提高醚基硫磺电池的性能--但该领域完全忽略了一个事实,即醚电解质本身就是一个问题。在我们的工作中,主要目标是用碳酸盐取代乙醚,但在这样做的时候,我们也消除了多硫化物,这也意味着没有穿梭,所以电池可以在数千次循环中表现得特别好。” Kalra团队以前的研究也是以这种方式处理问题的--生产一种碳纳米纤维阴极,通过遏制中间多硫化物的移动来减缓基于醚的锂硫电池中的穿梭效应。但是为了改善阴极的商业途径,该小组意识到它需要使它们与商业上可行的电解质一起发挥作用。 Kalra说:“拥有一个能与他们已经在使用的碳酸盐电解质一起工作的阴极,对商业制造商来说是阻力最小的途径。因此,我们的目标不是推动行业采用一种新的电解质,而是制造一种可以在现有的锂离子电解质系统中工作的阴极。” 因此,为了希望消除多硫化物的形成以避免不良反应,该团队试图使用蒸镀技术将硫限制在碳纳米纤维阴极基材中。虽然这个过程没有成功地将硫嵌入纳米纤维网中,但它做了一些非同寻常的事情,这在研究小组开始测试阴极时就显现出来。 “当我们开始测试时,它开始漂亮地运行--这是我们没有想到的。事实上,我们一遍又一遍地测试它--超过100次--以确保我们真的看到了我们认为看到的东西,”Kalra说。“我们怀疑硫磺阴极会导致反应停滞,但实际上它的表现惊人地好,而且它一次又一次地这样做,没有引起穿梭。” 经过进一步调查,研究小组发现,在将硫沉积在碳纳米纤维表面的过程中--将其从气体变为固体--它以一种意想不到的方式结晶,形成了该元素的一种轻微变化,称为单斜伽马相硫。硫的这种化学相,与碳酸盐电解质不发生反应,以前只在实验室的高温下产生,只在自然界的油井的极端环境中观察到过。 化学和生物工程系的博士生、该研究的共同作者Rahul Pai说:“起初,很难相信这就是我们探测到的东西,因为在以前的所有研究中,单斜伽马相硫在95摄氏度以下是不稳定的。在上个世纪,只有少数几项研究产生了单斜伽马相硫,而且它最多只稳定了20-30分钟。但是我们在一个阴极中创造了它,该阴极经历了数千个充放电循环而性能没有减弱--一年后,我们对它的检查表明,化学相一直保持不变。” 经过一年多的测试,硫磺阴极仍然稳定,正如该团队报告的那样,在4000次充放电循环中,其性能没有下降,这相当于10年的常规使用。而且,正如预测的那样,该电池的容量是锂离子电池的三倍以上。 Kalra说:“虽然我们仍在努力了解在室温下创造这种稳定的单晶硫的确切机制,但这仍然是一个令人兴奋的发现,它可以为开发更可持续和负担得起的电池技术打开许多大门。” 用硫磺替代锂离子电池中的阴极,将减轻对采购钴、镍和锰的需求。这些原材料的供应是有限的,而且不容易提取,不会造成健康和环境危害。另一方面,世界上到处都有硫磺,而且在美国有大量的硫磺,因为它是石油生产的废物。 Kalra建议,拥有一个稳定的硫磺阴极,在碳酸盐电解质中发挥作用,也将使研究人员能够在研究锂阳极的替代品方面取得进展--这可能包括更多的地球资源选择,如钠。 Kalra说:“摆脱对锂和其他昂贵且难以从地球上提取的材料的依赖,对于电池的发展和扩大我们使用可再生能源的能力来说是至关重要的一步。开发一种可行的锂硫电池为取代这些材料开辟了许多途径。”