《青岛能源所首次实现硫化物基固态电池界面锂传输的原位可视化和内电场调控》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-10-22
  • 采用硫化物固态电解质的固态电池具有高安全、高能量密度、长循环寿命等优势,预计将比现有电池更轻、更持久、更安全、更便宜,因此被认为是下一代动力电池的发展方向之一,丰田、三星、Solid Power、宁德时代等行业巨头对这一前瞻技术也都进行了积极布局。然而,硫化物固态电解质的界面电荷传输困难和界面稳定性差等瓶颈问题严重制约了电池的安全性、能量密度、循环寿命和快充性能,导致固态电池的产业化仍然面临各种阻碍。因此,亟需发展界面高速传输和界面稳定化等固态电池关键技术,突破上述瓶颈,进而推动硫化物固态电池早日上市。
      青岛能源所崔光磊研究员带领的固态能源系统中心聚焦动力电池发展的关键,立足前沿,独辟蹊径,发展了多项硫化物固态电池界面高速传输和稳定化关键技术,取得了一系列重要成果,为解决固态电池产业化发展的难题奠定了研究基础。2017年,通过仿生模拟设计了一种聚合物导电纤维增韧技术,提高了硫化物电解质的断裂强度(授权专利:ZL201711198632.3)。2018年,基于刚柔并济的设计理念,利用聚碳酸亚乙烯酯-Li10SnP2S12超分子化学作用,发展了原位聚合一体化固态电池技术,获得比容量和循环性能优异的LiFe0.2Mn0.8PO4基室温固态锂电池(ACS Appl. Mater. Interfaces 2018, 10, 13588-13597)。2019年,在深入认识有机无机复合电解质锂传输机制和构效关系的基础上,设计了具有三维双连续导电相的聚合物-硫化物复合电解质,提出并发展了离子和电子传输通道的原子尺度原位生成技术,实现电子、离子快速传输(室温离子电导率可达10-3 S cm-1数量级以上),为开发高安全、高容量、快速充放电的固态锂电池提供了有力的技术支撑(专利:201910451384.1;201911342394.8)。
      近日,青岛能源所崔光磊研究员,马君副研究员与天津理工大学李超博士、罗俊教授,中国科学院物理研究所谷林研究员合作,采用原位扫描透射电镜差分相衬成像技术首次实现了钴酸锂/硫化物电解质界面锂离子传输的可视化研究,并且通过设计制备具有非连续分布钛酸钡(BaTiO3)纳米单晶颗粒的界面结构,证明了一种新型的内建电场和化学势耦合技术改善界面锂传输的可行性,为改善界面锂离子传输和提升电池快充性能提供了新的技术方案(专利:202011101181.9;Nature Communication已接收)。基于上述研究进展,从超分子化学和界面构效关系的角度加深硫化物固态电池的关键科学问题理解,并且为理性设计高能量密度固态锂金属电池和解决其技术瓶颈提供了建设性方案

相关报告
  • 《Nature: Li-S电池界面反应的行为可视化》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 导读 锂-硫(Li-S)电池经历了一个16电子反应,将硫转化为一系列具有可变链长的锂硫化物(LiPSs)。其中,三分之四的容量主要由可溶性Li2S6到固态Li2S的反应贡献。在这个过程中,LiPSs物种的高溶解度以及Li2S2/Li2S的绝缘性质会导致活性材料的持续损失和严重的容量退化。已经提出了许多策略来增加能量密度和循环稳定性,如硫载体的结构调整、分离膜、电解质等。然而,这些材料设计背后的基本原则仍然不太清楚。例如,是什么限制了缓慢的反应动力学的速率限制步骤,阻碍了快速充电的Li-S电池的发展?活性中心在电极-电解质界面如何保持活跃以催化LiPSs? 为了研究锂-硫(Li-S)电池的电化学反应,研究人员使用了原位表征技术,包括X射线衍射(XRD)、X射线吸收近边结构(XANES)、核磁共振和拉曼光谱等。这些技术可以提供有关反应中间体/产物的具体化学/结构信息;但是,它们主要获取来自电解质和电极的混合信号的统计信息,从而对LiPSs的界面反应动力学的理解有限。由于高时空分辨率的优势,原位透射电子显微镜(TEM)可以在原子/单分子尺度上追踪动态反应。目前,开放式电池配置几乎无法避免在高真空环境下中硫的自发升华,并且以前报道的液体电池配置是由电子束(驱动而不是电场,因此在研究过程中不可避免地容易受到束流损伤。上述原位TEM研究尚未揭示液体电解质中的现实电化学氧化还原反应。 在这里,我们在液体电池内构建了一个Li-S纳米电池,并结合电化学透射电子显微镜(EC-TEM),在醚类电解质内实现了对电极表面LiPSs演变的高分辨率实时观察。我们的研究表明,活性中心将可溶性LiPSs聚集成类似液滴的密集相,并引发了非平衡纳米晶/无定形Li2S的瞬时沉积,而不是传统的逐步转化。密度泛函理论(DFT)计算和分子动力学(MD)模拟指出,聚集诱导的相变是由于活性中心与LiPSs液滴状密集之间的远程静电相互作用和集体电荷转移行为而导致的。 成果掠影 由于高能量密度和低成本,锂-硫(Li-S)电池被认为是先进能源存储系统的有希望的候选者。尽管在抑制锂硫化物长期存在的“穿梭效应”方面付出了巨大努力,但在纳米尺度上理解锂硫化物的界面反应仍然难以捉摸。鉴于此,中国厦门大学和美国伊利诺伊大学科学家使用原位液体电池电化学透射电子显微镜,直接可视化了锂硫化物在电极表面的原子尺度转化。值得注意的是,我们捕捉到了锂硫化物在纳米团簇活性中心固定表面上发生的出乎意料的聚集诱导的集体电荷转移。它进一步导致了从浓密的锂硫化物液相瞬间沉积出非平衡的Li2S纳米晶体。在没有活性中心的介入的情况下,反应遵循了经典的单分子途径,锂硫化物逐步转化为Li2S2和Li2S。分子动力学模拟表明,活性中心与锂硫化物之间的远程静电相互作用促进了由Li+和Sn2?(2 < n ≤ 6)组成的密集相的形成,密集相中的集体电荷转移也被从头分子动力学模拟所验证。这种集体界面反应路径揭示了一种新的转化机制,深化了对Li-S电池的基本理解。相关研究成果以“Visualizing interfacial collective reaction behaviour of Li–S batteries”为题,发表在顶级期刊《Nature》上。 核心创新点 本文的核心创新点是通过原位液体电池电化学透射电子显微镜成功可视化了锂硫化物在电极表面的原子尺度转化,揭示了锂-硫电池中的集体界面反应路径,深化了对其工作机制的理解。 成果启示 在锂-硫(Li-S)电池的多电子反应中,涉及到LiPSs中间体与活性中心之间的吸附、催化和转化,而支配Li2S沉积/溶解的反应动力学的复杂性导致了多样且模糊的反应途径。在这项研究中,通过使用高时空分辨率的原位电化学透射电子显微镜(EC-TEM),我们展示了活性中心将可溶性LiPSs聚集成类似液滴的密集相,从而诱导了瞬时的晶化,而不是经典的逐步转化。此外,我们的初步结果表明,集体反应机制似乎对其他金属活性中心也具有普遍性,需要进行更系统的研究。以前的材料/表面改性研究主要集中在从单分子角度阐明吸附和催化机制上。我们的实验和模拟结果表明,离子和分子的聚集状态和集体行为在电化学界面反应的动力学中起到了关键作用。这种集体机制为构建下一代高能量、长寿命和快速充电的Li-S电池提供了新的见解。 原文详情: Zhou, S., Shi, J., Liu, S. et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 621, 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8.
  • 《多家头部企业锚定硫化物全固态电池,量产时间已定》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-14
    • 作为已经被业界公认的下一代先进电池,全固态电池产业化已经被全球主要汽车与电池生产国上升到战略高度。 根据不同的电解质类型,固态电池主要包括聚合物、氧化物、硫化物三种技术路线。具体选择哪种路线来制造全固态电池?头部企业似乎已经有了答案。 据电池中国了解,目前包括Solid Power、丰田、松下电池、三星 SDI等海外企业,均选择硫化物路线研发全固态;国内来看,包括宁德时代、亿纬锂能、国轩高科、蜂巢能源、广汽等企业也锚定了硫化物路线。 业内人士分析指出,硫化物电解质离子电导率最高,电化学窗口宽,柔度和可塑性好,或最终成为全固态电池主要路径。但需要指出的是,硫化物电解质生产要求高,且硫化锂前驱体昂贵,仍是制约其商业化的主要障碍。 值得注意的是,在全球都在加大全固态电池领域投资、研发的当下,中国正逐步建立全固态电池产业链。 01 多家电池企业公布全固态电池量产时间表 今年以来,对全固态电池的关注度陡然增温。就连之前对全固态电池不太乐观的宁德时代,也改口了。今年年初,宁德时代董事长曾毓群在接受媒体采访时,还曾对固态电池即将商业化的说法持质疑态度。彼时,丰田称固态电池最早将于2027年投入使用,但曾毓群表示,电动汽车固态电池距离商业化还有数年时间,这项技术还不够完善,缺乏耐用性,且仍然存在安全问题。 然而,今年6月,宁德时代在接受投资者调研时表示,如果用技术和制造成熟度作为评价体系(1-9打分), 宁德时代全固态电池研发项目目前处于4的水平,目标是到2027年达到7-8的水平,有望实现全固态电池小批量生产。 “目前没有任何一种固态电解质是十全十美的,(但)硫化物路线或率先突破。”宁德时代储能事业部CTO许金梅表示。值得注意的是,宁德时代首席科学家吴凯今年早些时候也透露,宁德时代2027年小批量生产全固态电池机会很大,硫化物路线进展较快,并已建立10Ah级全固态电池验证平台。 据了解,目前全固态电池在固固界面、锂金属负极、固态电解质、制造工艺等维度仍面临挑战,宁德时代已经在高比能、长寿命正极,高性能锂金属负极,以及干/湿法极片制备和电芯一体化成型工艺等维度有进展。 今年6月,亿纬锂能也曾透露,公司在全固态电池电解质路线上,选择了硫化物和卤化物复合固态电解质路线,预计2026年将突破生产工艺,推出全固态电池,并在2028年推出能量密度高达400Wh/kg的全固态电池。 5月,国轩高科对外发布了公司自主研发的全固态电池产品——“金石电池”,该电池采用了硫化物电解质路线,基于对硫银锗矿型材料的微纳化处理(D50不超过500nm),其电解质可实现超过10mS/cm的高电导率。据国轩高科介绍,其30Ah全固态电芯可实现350Wh/kg的质量能量密度,800Wh/L的体积能量密度,电芯体系循环次数则可达3000次以上。 此外,广汽集团今年4月发布了能量密度达400Wh/kg以上的全固态电池,计划于2026年首先搭载于其昊铂车型。据业内人士分析,广汽或采用了硫化物电解质。去年10月,丰田汽车和日本出光兴产石油公司共同宣布,争取2027至2028年使全固态电池进入实用化阶段,亦采用硫化物固态电解质,这种固态电解质能实现大容量、大功率等特性。 02 产业链逐步跟进,硫化物全固态量产可期 据报道,上个月欧阳明高院士工作站在全固态电池中的关键材料——“硫化物电解质”的研发中,已经取得阶段性进展:研发的纳米级“硫化物电解质”即将进入量产阶段,目前正在规划一条年产百吨级的中试线。中试线运行顺利后,2026年前,欧阳明高院士工作站还会建设一个千吨级的量产线。 作为国内电解液头部企业之一,据悉天赐材料Li2S与硫化物电解质将于今年完成实验室中试,规划未来两年实现中试及量产。 当升科技在投资者互动平台表示,该公司已系统布局硫化物、氧化物、聚合物等主流固态电池用关键材料技术路线。未来,当升科技会根据市场情况和客户需求持续推进固态锂电材料生产及销售。 据悉,容百科技已经布局离子电导率>10mS/cm,对空气稳定性>75%,粒径<700nm的硫化物固态电解质,以及适配全固态电池的电容量>207mAh/g、效率>86%、压实密度>3.6g/cc三元正极材料。 容百科技研发体系总裁李琮熙表示,为实现硫化物系全固态电池的产业化,就需要让基础原料硫化锂的价格持续降低才可以。此外,在全固态电池产业化道路上,还需要攻克固态电解质与正负极材料间的界面问题、固态电解质的合成问题、固态电池制造工艺多个技术难题。 值得一提的是,今年以来,多家电池产业链企业、科研机构在核心工艺、先进设备研发等维度持续取得进展,相信结合大数据技术,以及在全行业积极投入推动下,全固态电池的产业化有望提前到来。