《贵金属纳米结构表面等离激元研究获系列进展》

  • 来源专题:纳米科技
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2017-04-01
  • 贵金属纳米结构表面等离激元研究获系列进展2017/03/30 点击 34 次中国粉体网讯 近期,中国科学院合肥物质科学研究院固体物理研究所副研究员张俊喜与中国科学技术大学光学与光学工程系、英国Aston大学光子技术研究所(AIPT)、澳大利亚国立大学非线性物理中心等单位科研人员合作,在贵金属纳米结构表面等离激元研究中取得系列进展。

    实现光与物质之间强的相互作用在设计光子器件上有重要意义,构筑共振腔体是实现光与物质强相互作用的重要途径。传统介电共振腔体有高的品质因子,但模式体积大,要减小其物理尺寸到亚波长受到光衍射极限限制。相比之下,表面等离激元共振腔能突破光衍射极限,能在亚波长和纳米尺度上实现对光子的操纵,因而它将在光源、传感和表面增强光谱等方面有重要的应用前景。当前影响表面等离激元共振腔性能的瓶颈是损耗大,如何控制表面等离激元模式和耦合界面是突破这一瓶颈的关键。

    张俊喜等在表面等离激元共振腔模式方面取得新的突破,在金纳米管阵列超材料腔体中发现了一种表面等离激元新的杂化模式。发展氧化铝模板电沉积技术控制制备金纳米管阵列超材料,通过控制纳米管长度实现对表面等离激元谐波模式数量和谐波阶(奇数和偶数阶)以及不同阶谐波模式峰位的调控。采用时域有限差分法(FDTD)模拟发现金纳米管管壁表面不同阶谐波模式光场呈驻波形式,由此可以作为表面等离激元共振腔。第一次在这种纳米管阵列中发现横向模式和纵向模式耦合产生的表面等离激元T-L杂化模式和异常光透射(EOT)耦合增强现象。这种新型的表面等离激元共振腔及其杂化模式有望用于设计高性能的纳米光子器件。该工作发表在《先进光学材料》(Advanced Optical Materials 5 (4), 1600731 (2017))上。

    同时基于银纳米棒阵列超材料设计了一种周期性耦合界面全开放形式的表面等离激元共振腔。发现纳米棒周期性界面显示强的表面等离激元腔模式,它是由纳米棒之间的表面等离激元近场耦合效应引起的。发现纳米棒阵列全开放腔体与金膜基底之间存在一种新的表面等离激元耦合模,随腔体与基底之间间隙增加,耦合模共振峰位发生蓝移、能量从腔体向基底发生转移。这种全开放形式的表面等离激元纳米共振腔便于转移到其它基底上,这为设计纳米光子器件及其应用提供原理和材料支持。该工作发表在《纳米技术》(Nanotechnology 27 (41), 415708 (2016))上。

    (来源:新浪新闻) 相关新闻: · 中国科学院金属所制备出梯度纳米结构 降低合金摩擦系数 2016.12.29· 糖尿病患者的“福音”:纳米结构晶体管制葡萄糖传感器2016.11.17· 中国科学院苏州纳米所取得手性等离子体纳米结构新突破2016.08.04· 我国研究人员成功实现大面积纳米结构光学定向组装2016.07.19· 中国科大设计出具有缺陷态的氧化钨纳米结构催化剂2016.07.14· 北大联合苏州大学在新型多金属纳米晶氧气电催化剂研究中获进展

相关报告
  • 《理化所等发现液态金属焊接纳米颗粒效应并获系列应用技术进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-13
    •         近期,中国科学院理化技术研究所与清华大学联合研究小组,首次报道了液态金属焊接纳米颗粒效应。在题为《基于液态金属模板电化学焊接效应实现薄层导电多孔纳米金属网》(Tang et al., Thin, Porous, and Conductive Networks of Metal Nanoparticles through Electrochemical Welding on a Liquid Metal Template, Advanced Materials Interfaces, 2018: 1800406)的论文中(封面文章),研究组首次发现,将包裹有金属纳米颗粒的液态金属小球置于碱性溶液中时,原本分散的颗粒会以自组织方式被连接成纳米多孔网状结构且易于剥离下来(图1)。究其原因,是在碱性溶液中,液态金属界面呈还原性,而铜纳米颗粒表面由于氧化会形成氧化物;二者在溶液中电化学势不同,体系于是发生电化学反应,由此造成纳米颗粒表面的氧化物被还原,进而导致新生成的金属铜将周围铜颗粒牢牢粘结到一起。这一过程如同经典的金属焊接一般,因此研究小组将其命名为“液态金属焊接纳米颗粒效应”。   颗粒网状物具有良好的机械强度,由此可将其从液态金属表面剥离开来并转移到其它基底上。通过测量这一类特殊的由金属颗粒组成的薄膜多孔材料的导电性,发现其与普通金属导电材料不同:体系中存在一种由电场导致的电阻降低特性;当电压过高时,测试电阻会突然增大数个量级,说明过高电压会导致颗粒网的导电性失效。深入研究揭示,造成电阻降低的原因在于外加电场下静电作用会使部分分开的颗粒网连接到一起增加了导电通路;而电阻骤升的原因则是大电流下电迁移作用增强,使得颗粒连接断开而失去导电能力。以上发现促成了利用液态金属编织微米厚度多孔导电颗粒网方法的建立,由此获得的新材料具有良好的机械强度和独特的电学性能。   此外,在联合小组发表的另一篇题为《铜离子激发的自生长液态金属蛇形运动》(Chen et al., Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions, ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.8b07649)的论文中,研究组首次发现了一种崭新的自生长液态金属蛇形分散效应。在前期研究中,液态金属自驱动机器、表面Marangoni流动以及周期性自激振荡效应等现象相继被发现和解释。然而,因为液态金属巨大的表面张力,这些变形行为更多是作为一个整体呈现。此次发现的效应,则是一种不同于以往的大尺度液态金属离散变形与蛇形运动,革新了人们对液态金属空间构型转换方式的认识。   研究表明,在酸性铜盐溶液中,一团液态金属可以自发生长出大量细条状的伪足并像蛇一样运动(图2)。此现象背后的机理主要在于,因置换反应所形成的无数个微小的Cu-Ga原电池产生于液态金属和铜盐溶液界面处,这会改变液态金属的表面张力,从而产生不平衡的界面压差,最终导致了蛇形运动的发生。这里,溶液的酸性对实验结果影响巨大。在合适的酸性条件下,可通过调节酸性的强弱去控制蛇形液态金属的生成和运动速度。而且,此蛇形运动可被多次激发,大大增加了运动的持久性。研究进一步揭示,酸性铜盐溶液这一独特环境保证了无数的铜颗粒可以被持续稳定地析出和吞噬,此类动态平衡是蛇形分散运动现象得以发生的深层次原因。该现象丰富了液态金属物质世界的科学图景,进一步拓展了近年来兴起的液态金属柔性机器的理论与技术内涵。   除上述基础发现外,联合小组近期还在液态金属先进应用技术研究方面取得系列新进展,先后针对肿瘤治疗用生物医学新材料(图3,Wang et al., Advanced Healthcare Materials, 2018)、高性能电子墨水(图4,Chang et al., Advanced Materials Interfaces, 2018)、可穿戴医疗(图5,封面文章,Guo et al., Adv. Eng. Mater., 2018)、可拉伸皮肤电子(图6,Guo et al., Science China Technological Sciences, 2018)以及柔性机器人传感与控制(图7,Guo et al., Smart Materials and Structures, 2018)等新兴领域的紧迫现实需求发展出系列重要实用技术。   以上研究得到中国科学院院长基金与前沿科学项目及国家自然科学基金重点项目资助。
  • 《福建物构所钕掺杂LiLuF4近红外纳米发光材料电子结构研究获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 稀土掺杂近红外纳米发光材料由于深层生物组织穿透、无背景荧光干扰和对生物样本损伤小等特点在生物成像和温度传感等领域具有重要的应用前景。Nd3+离子在介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学,对Nd3+基纳米发光材料开展深入的光物理研究对其光学性能的优化及其在生物医学领域的应用至关重要。然而,由于晶格内部和表面缺陷等影响,Nd3+离子在纳米材料中通常存在多格位发光,导致其晶体场跃迁发射谱线复杂、难以区分。目前,在纳米发光材料中揭示Nd3+离子发光中心的局域电子结构仍是该领域的一个技术挑战。   中国科学院福建物质结构研究所功能纳米结构与组装重点实验室陈学元团队在中国科学院战略性先导科技专项、创新国际团队以及郑伟和黄萍主持的国家自然科学基金面上基金、中国科学院青促会、海西研究院“春苗”人才专项等支持下,首次在LiLuF4纳米晶中揭示了Nd3+离子的局域电子能级结构。该团队以Eu3+为结构探针,利用低温高分辨光谱、时间分辨光谱和位置选择光谱等先进的测试手段,揭示了稀土离子在LiLuF4纳米晶中存在单一的光谱学S4位置对称性,与其结晶学位置对称性一致。通过Nd3+的低温高分辨光谱和变温光谱等测试手段,精确指认出36条源自Nd3+的4F3/2 → 4IJ(J = 9/2, 11/2, 13/2)晶体场跃迁的发射谱线,并确定了Nd3+的4F3/2和4IJ组态的全部Stark子能级位置。进一步地,该团队利用指认出的4F3/2两个Stark子能级的跃迁强度与温度的不同依赖关系,将LiLuF4:Nd3+纳米晶作为近红外纳米荧光探针用于77-275 K低温区间的高灵敏温度探测,其最高相对灵敏度达到0.62% K-1,与此前报道的Nd3+掺杂纳米荧光温度计的最高值相当。该研究对发展高效Nd3+基近红外纳米荧光探针提供了理论基础,也为稀土纳米荧光探针在低温探测领域的新应用指明了方向。相关结果3月14日在线发表于《先进科学》(Adv. Sci. 2019, 1802282. DOI: 10.1002/advs.201802282)。   此前,陈学元团队在稀土掺杂纳米发光材料的发光物理和应用研究方面取得一系列进展。例如,发展高效LiLuF4:Yb,Er多层核壳结构上转换纳米晶,实现对肿瘤标志物β-hCG的高灵敏特异性检测和肿瘤细胞的靶向荧光成像(Angew. Chem. Int. Ed. 2014, 53, 1252-1257; Sci. China Mater. 2015, 58, 156-177; Mater. Today Nano 2019, 5, 100031);设计合成NaCeF4:Er近红外二区纳米荧光探针,实现对人体血清中尿酸的高灵敏检测及对小鼠深层组织高分辨成像(Chem. Sci. 2018, 9, 4682-4688)。