• 快讯 上海有机所等发现延缓受损神经退化新机制

    编译服务:中科院亮点监测
    编译者:yanyf@mail.las.ac.cn
    发布时间:2019-04-06
    2月13日,国际学术期刊《科学进展》(Science Advances)发表了由中国科学院上海有机化学研究所生物与化学交叉研究中心方燕姗课题组联合香港科技大学、暨南大学研究团队的最新研究成果“Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration”。该工作首次发现了Vps4蛋白在神经损伤中的重要作用,揭示了Vps4和内吞体分选转运复合物 (endosomal sorting complexes required for transport, ESCRT) 具有调控神经束中自噬水平的功能,并运用多种神经损伤模型充分证明了提高神经元中Vps4水平可以明显延缓受损神经的退化,为治疗神经损伤和神经退行性病变带来了新希望。   神经轴突退化 (axonal degeneration) 是急性神经损伤和多种慢性神经退行性疾病的重要病理变化之一。特别是神经损伤中,远离神经元胞体的神经纤维会逐渐发生肿胀,继而发生串珠样、碎片样改变,并最终被周围的神经胶质细胞和巨噬细胞吞噬清理,这一过程被称为沃勒变性 (Wallerian degeneration)。神经轴突的沃勒变性是一个主动的、在细胞和分子水平上受到高度调控的“自我毁灭”过程。近二三十年的研究对于沃勒变性分子机制的认识有了长足进步,特别是关于调控NAD+代谢相关的基因如NAD+合成酶Nmnat和NAD+水解酶Sarm1以及它们的上下游通路。然而,神经损伤引发的是一系列复杂、多因素参与的细胞和分子反应,哪些未知的关键基因和分子机制介导了神经损伤中“死亡”信号的转导并最终导致神经轴突沃勒变性的发生是神经损伤领域的重要科学问题。   在这项由沪港粤三地研究团队联袂合作的工作中,研究人员首先通过基于果蝇模式动物的大规模遗传学筛选实验发现了一个全新的、从未被报道过的维持神经轴突完整性的关键基因——ESCRT复合物基因Vps4。进一步的研究表明,神经损伤引起Vps4蛋白水平迅速下降,造成ESCRT复合物功能异常,导致神经轴突自噬清理障碍。自噬是细胞通过溶酶体将细胞中错误折叠蛋白、受损细胞器等进行吞噬、清理和降解的过程,对于维持神经元生存和正常功能至关重要,并且与多种人类神经退行性疾病密切相关。此项研究则明确显示,神经损伤中自噬小体在神经纤维中的堆积导致或加剧了沃勒变性的发生。进而,研究人员在包括果蝇翼神经束、小鼠原代神经元以及小鼠视神经等多种不同的神经损伤模型中提高Vps4蛋白的表达水平,该方法不仅显著减轻神经损伤引起的自噬清理障碍而且有效延缓受损神经的退化。   Vps4新机制的发现,打破了过往认为只有Nmnat酶和NAD+相关通路可以有效阻止受损神经退化的论断,是理解神经轴突沃勒变性分子调控机制的重要发现。目前通过提高Vps4表达量的实验可以延缓受损神经退化3天左右,未来的研究中继续寻找阻止Vps4蛋白迅速降解的有效方法有望获得更强的神经保护作用。此外,该研究还指出,神经损伤中所谓的自噬水平“升高”并非简单的自噬被诱导激活,而是更多归结于Vps4蛋白下降造成的自噬清理障碍、自噬小体堆积。这也解释了为什么在神经损伤的应对策略中,阻遏自噬发生不如增强自噬清理——犹如“大禹治水,疏胜于堵”。   上述工作由上海有机所研究员方燕姗、香港科技大学教授刘凯和暨南大学副研究员李昂为共同通讯作者,上海有机所生物与化学交叉研究中心博士生王海琼为第一作者。经费支持主要来自科技部“863”计划青年科学家专题、国家重点研发计划项目、国家自然科学基金委、国家青年***、中科院和上海市科委等的资助。
  • 快讯 中国科大在高效去除氢气中微量CO研究方面取得进展

    编译服务:中科院亮点监测
    编译者:yanyf@mail.las.ac.cn
    发布时间:2019-04-06
    氢能是未来最理想的一种清洁能源。氢燃料电池汽车以氢气为燃料,能量转化效率高,清洁零排放,是未来新能源清洁动力汽车的主要发展方向之一。然而氢燃料电池汽车的推广目前仍然困难重重,其中一个关键难题是氢燃料电池电极的CO中毒问题。现阶段,氢气主要来源于甲醇和天然气等碳氢化合物的水蒸汽重整、水煤气变换反应等,通常含有0.5%~2%的微量CO。作为氢燃料电池汽车的“心脏”,燃料电池电极极易被CO杂质气体毒化,从而致使电池性能降低和寿命缩短,严重限制了该类汽车的推广。富氢氛围CO优先氧化(PROX)是车载去除氢气中微量CO的最理想方式。然而现有PROX催化剂工作温度相对较高(室温以上)且区间窄,无法在寒冷条件下为氢燃料电池频繁冷启动过程中提供有效保护。   针对该技术难题,中国科学技术大学教授路军岭、韦世强、杨金龙等课题组密切合作,利用原子层沉积技术(ALD),首次设计出一种新型Fe1(OH)x-Pt单位点界面催化剂结构(图1),并在低温高效去除氢气中微量CO制备高纯氢气方面取得新进展。研究成果以Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2 为题,于1月31日在线发表在国际期刊《自然》(Nature)上。   该工作中,路军岭课题组充分利用ALD技术中的表面自限制反应以及二茂铁金属源在贵金属表面解离吸附和分子间空间位阻效应的特性,成功地在SiO2负载的Pt金属纳米颗粒表面上,原子级精准地构筑出单位点Fe1(OH)x物种,进而促成了丰富且具有超高活性和高稳定性的Fe1(OH)x-Pt单位点界面催化活性中心的形成。在PROX反应中,研究人员利用该新型催化剂首次在~-75°C至110°C的超宽温度区间,成功实现了100%选择性地CO完全去除(图2a,b),极大突破了现有PROX催化剂工作温度相对较高且区间窄的两大局限性,为氢燃料电池在寒冷条件下频繁冷启动和连续运行期间避免CO中毒,提供了一种全方位的有效保护手段,从而为未来氢燃料电池汽车的推广扫清了一重大障碍。更难能可贵的是,该催化剂在模拟真实环境,即CO2和水汽都存在的情况下,仍可表现出极佳的稳定性(图2c),且比质量催化活性(5.21 molCO h-1 gPt-1)是传统Pt/Fe2O3催化剂的30倍(图2d)。   韦世强课题组利用原位X射线吸收谱(XAFS)从实验上探测到Fe1(OH)x物种在PROX反应气氛中的结构是Fe1(OH)3,Fe原子与Pt纳米颗粒表面Pt原子形成Fe-Pt的金属键,而无明显的Fe-Fe键,并且惊奇地发现该物种具有超高还原特性,在室温就实现氢气还原生成Fe1(OH)2,揭示了其高催化活性的内在原因。王兵课题组利用扫描隧道电子显微镜(STM)研究了FeOx ALD在Pt单晶表面的生长行为,观察到了亚纳米尺寸FeOx物种的形成,从而直接证明了在Pt表面上形成单分散Fe物种的可能性。与此同时,近常压X-射线光电子能谱(NAP-XPS)实验也进一步证实PROX反应气氛下,与Fe成键的氧物种是羟基物种。   杨金龙课题组理论计算确定了Fe1(OH)3在Pt表面上的空间构型,证实Pt颗粒表面上形成的Fe1(OH)x-Pt单位点界面是其催化活性中心,并揭示了其催化反应机理:吸附的CO首先进攻其中一个OH,形成COOH表面中间物种;此后,O2在该界面处以极低的势垒活化;形成的原子O随后进攻COOH,最终生成CO2。   众所周知,金属—氧化物界面在众多催化反应中起着至关重要的作用。该工作为人们设计高活性金属催化剂提供了新思路。   该项研究得到国家自然科学基金、国家重点研发计划、国家基础科学中心项目、中组部“青年千人”计划、瑞典研究协会以及克努特和爱丽丝布·瓦伦堡基金会的支持。北京同步辐射、上海同步辐射、合肥国家同步辐射中心以及瑞典Max-lab等国家实验室为该项研究提供了支持。
  • 监测快报 2018中科院成果亮点

    编译服务:中科院亮点监测
    编译类型:快报,简报类产品
    发布时间:2020-09-15
    汇集每季度中科院内科技成果亮点、转移转化亮点、科技人物及获奖资讯
  • 监测快报 2018雁栖湖亮点情报产品

    编译服务:中科院亮点监测
    编译类型:快报,简报类产品
    发布时间:2020-09-15
    2018雁栖湖亮点情报产品
  • 监测快报 2019雁栖湖亮点情报产品

    编译服务:中科院亮点监测
    编译类型:快报,简报类产品
    发布时间:2020-09-15
    2019雁栖湖亮点情报产品