《CuxS counter electrodes in-situ prepared via the sulfidation of magnetron sputtering Cu film for quantum dot sensitized solar cells》

  • 来源专题:广州能源研究所信息监测
  • 编译者: giecinfo
  • 发布时间:2016-04-14
  • The nanosheet-structured CuxS thin films used as counter electrodes (CEs) for CdS/CdSe quantum dot sensitized solar cells (QDSSCs) have been in situ prepared via the sulfidation of Cu nanoparticles deposited on F-doped SnO2 glass (FTO glass) substrate by magnetron sputtering method. The thickness of the deposited Cu film affects the morphology and thickness of the obtained CuxS films. The CuxS nanosheet films have good adhesion with FTO glass and the surface exhibits uniform morphology. The characteristics of QDSSCs are studied in more detail by photocurrent-voltage performance measurements, incident photon-to-current conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS). The CuxS on FTO glass (CuxS/FTO) CEs show much higher power conversion efficiency (PCE) and IPCE than those of the Pt on FTO (Pt/FTO) CE because of their superior carrier mobility and electro-catalytic ability for the polysulfide redox reactions. Based on an optimal CuxS film thickness of 2.7 μm obtained by the sulfidation of the Cu film thickness of 300 nm on FTO, the best photovoltaic performance with PCE of 3.67% (Jsc = 16.47 mA cm−2, Voc = 0.481 V, FF = 0.46) under full one-sun illumination is achieved.

相关报告
  • 《Wearable Solar Cells by Stacking Textile Electrodes?》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal–textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light.
  • 《Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Production of Cu/Zn Nanoparticles by Pulsed Laser... Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy Article Preview Abstract: As a preliminary step to establish technology for fabricating High-Entropy Alloys (HEAs) that can make a large-scale HEA using a pulse laser with high peak intensity and high-repetition in the future, we fabricated alloys in which two types of metal atom are mixed close together in the order of nanometers. For the method to produce the alloy, metal alloy nanoparticles were prepared by irradiating the material in liquid with focused high-repetition Q-switched laser pulses using an in-liquid laser ablation method. When brass powder was used as an original material, analysis results by TEM showed that numerous nanoparticles mixed with copper and zinc atoms could be produced. Furthermore, it was clarified by SEM EDS that copper and zinc atoms in the nanoalloy were maintained at a ratio of 3:1 in sintered alloy, and that the atoms were spatially uniformly distributed over a wide range in sintered metal. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 91-108 DOI: https://doi.org/10.4028/p-Bo8Als Citation: Cite this paper Online since: July 2024 Authors: Taku Saiki, Mitsuru Inada Keywords: Brass Powder, Cu/Zn Alloy, High-Entropy Alloys (HEA), Laser Ablation in Liquids, Metal nanoparticles Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] Haruyuki Inui, High-Entropy Alloy, Uchidaroukakuho, Tokyo, 2020. Google Scholar [2] S.-H. Joo, J. W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. S. Kim, A. Takeuchi, T. J. Konno, H. Kato, I. V. Okulov, Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design, Adv. Mater. 32 (2020) 1906160. DOI: 10.1002/adma.202070044 Google Scholar [3] C. Haase, F. Tang, M. B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Materials Science and Eng. A 688 (2017)180-189. DOI: 10.1016/j.msea.2017.01.099 Google Scholar [4] B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Boston, 2014, p.1 Chap. 1. Google Scholar [5] X. Lim, Mixed-up metals make for stronger, tougher, stretchier alloys, Nature 533 (2016) 306-307. DOI: 10.1038/533306a Google Scholar [6] J. W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Yi. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536. DOI: 10.1007/s11661-006-0234-4 Google Scholar [7] B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218. DOI: 10.1016/j.msea.2003.10.257 Google Scholar [8] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H.Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(2014) 1153-1158. DOI: 10.1126/science.1254581 Google Scholar [9] O.N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracke, Mechanical properties of Nb25Mo25Ta25W25 andV20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706. DOI: 10.1016/j.intermet.2011.01.004 Google Scholar [10] Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H Nara, A. S. Nugraha, H. Kawamoto, M. Eguchi, T. Liao, Z. Sun, T. Asahi, Y. Yamauchi , Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites, Nature Commun. 14 (2023) Article number: 4182. DOI: 10.1038/s41467-023-39157-2 Google Scholar [11] Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi, K. Hayashi, N. Todoroki, T. Wadayama, Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces, Nature Commun. 14 (2023) Article number: 4492. DOI: 10.1038/s41467-023-40246-5 Google Scholar [12] K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Commun. 12 (2021) Article number: 3884. DOI: 10.1038/s41467-021-24228-z Google Scholar [13] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd. 495 (2010) 33-38. DOI: 10.1016/j.jallcom.2009.12.010 Google Scholar [14] S. Praveen, B. S. Murty, R. S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A 534 (2012) 83-89. DOI: 10.1016/j.msea.2011.11.044 Google Scholar [15] W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51 (2013) 854-860. DOI: 10.1016/j.matdes.2013.04.061 Google Scholar [16] Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique, Mater. Des. 44 (2013) 535-539. DOI: 10.1016/j.matdes.2012.08.048 Google Scholar [17] W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24-27. DOI: 10.1016/j.intermet.2014.08.008 Google Scholar [18] Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science 396 (2017) 1420-1426. DOI: 10.1016/j.apsusc.2016.11.176 Google Scholar [19] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36. DOI: 10.1016/j.scriptamat.2017.02.042 Google Scholar [20] R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater. 68 (2013) 813- 816. DOI: 10.1016/j.scriptamat.2013.01.038 Google Scholar [21] Y. Z. Tian, L. J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji, Optimizing strength and ductility in Cu-Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing, J. Mater. Sci. 49 (2014) 6629-6639. DOI: 10.1007/s10853-014-8299-8 Google Scholar [22] Y. Z. Tian, Y. Bai, M. Chen, A. Shibata, D. Terada, N. Tsuji, Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure, Metall. Mater. Trans. A 45 (2014) 5300-5304. DOI: 10.1007/s11661-014-2552-2 Google Scholar [23] Y. Z. Tian, L. J. Zhao, S. Chen, A. Shibata, Z. F. Zhang, N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes, Sci. Rep. 5 (2015), Article number: 16707. DOI: 10.1038/srep16707 Google Scholar [24] R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures, Scripta Mater. 131 (2017) 1-5. DOI: 10.1016/j.scriptamat.2016.12.024 Google Scholar [25] C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nature Commun. 9 (2018) Article number: 1355. DOI: 10.1038/s41467-018-03734-7 Google Scholar [26] H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koidzumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng. A 656 (2016) 39-46. DOI: 10.1016/j.msea.2016.01.019 Google Scholar [27] T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett. 189 (2017) 148-151. DOI: 10.1016/j.matlet.2016.11.026 Google Scholar [28] T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Materials Letters 159 (2015) 12-15. DOI: 10.1016/j.matlet.2015.06.046 Google Scholar [29] Y. L. Chou, J. W. Yeh, H. C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corr. Sci. 52 (2010) 2571-2581. DOI: 10.1016/j.corsci.2010.06.025 Google Scholar [30] Y. L. Chou, J. W. Yeh, H. C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67 (2011) 085002. DOI: 10.5006/1.3613646 Google Scholar [31] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich, X. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544-13549. DOI: 10.1021/acs.langmuir.8b02837 Google Scholar [32] Y. Kudo, M. Suzuki, Al slid-stage Air Cells, JP Patent 147442. (2006). Google Scholar [33] P. Charvin, S. Abanades, F. Lemort, G. Flamant, Hydrogen Production by Three-Step Solar Thermochemical Cycles Using Hydroxides and Metal Oxide Systems, Energy & Fuels 21 (2007) 2919-2928. DOI: 10.1021/ef0701485 Google Scholar [34] D. G. Rowe, Solar-powered lasers, Nature Photonics 4 (2010) 64-65. Google Scholar [35] T. Yabe, T. Okubo, S. Uchida, K. Yoshida, M. Nakatuska, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium, Appl. Phys. Lett. 90 (2007) 261120-261122. DOI: 10.1063/1.2753119 Google Scholar [36] M. S. Mohamed, T. Yabe, C. Baasandash, Y. Sato, Y. Mori, L. Shi-Hua, H. Sato, S. Uchida, Laser- induced magnesium production from magnesium oxide using reducing agents, J. Appl. Phys. 104 (2008) 113110-113116. DOI: 10.1063/1.2975969 Google Scholar [37] T. Saiki, T. Okada, K. Nakamura, T. Karita, Y. Nishikawa, Y. Iida, Air Cells Using Negative Metal Electrodes Fabricated by Sintering Pastes with Base Metal Nanoparticles, Int. J. of Energy Science 2 (2012) 228-234. Google Scholar [38] T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, Y. Iida, Recyclable metal air fuel cells using sintered magnesium pastes with reduced Mg nanoparticles by high-repetitive ns pulse laser ablation in liquid, Int. J. of Sustainable and Green Energy 3 (2014) 143-149. DOI: 10.1364/cleo_at.2017.jth2a.11 Google Scholar [39] T. Okada, T. Saiki, S. Taniguchi, T. Ueda, K. Nakamura, Y. Nishikawa, Y. Iida, Hydrogen Production using Reduced-iron Nanoparticles by Laser Ablation in Liquids, ISRN Renewable Energy 2013 (2013) ID 827681. DOI: 10.1155/2013/827681 Google Scholar [40] T. Saiki, S. Taniguchi, K. Nakamura, Y. Iida, Development of Solar-Pumped Lasers and Its Application, Electrical Engineering in Japan 199 (2017) 3-9. DOI: 10.1002/eej.22961 Google Scholar [41] T. Saiki, Y. Iida, M. Inada, Appearance of ferro-magnetic property for Si nano-polycrystalline body and vanishing of electrical resistances at local high frequencies, J. of Nanomaterials 2018 (2018) ID 9260280. DOI: 10.1155/2018/9260280 Google Scholar [42] G. Cohn, D. Starosvetsky, R. Hagiwara, D. D. Macdonald, Y. Ein-Eli, Silicon-air batteries, Electrochemistry Commun. 11 (2009) 1916-1918. DOI: 10.1016/j.elecom.2009.08.015 Google Scholar [43] A. Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97 (1993) 5457-5471. DOI: 10.1021/j100123a004 Google Scholar [44] M. S. Sibbald, G. humanov, and T. M. Cotton, Reduction of cytochrome c by halide-modified, laser- ablated silver colloids, J. Phys. Chem. 100 (1996) 4672-4678. DOI: 10.1021/jp953248x Google Scholar [45] M. Kawasaki and N. Nishimura, Laser-induced fragmentative decomposition of ketone-suspended Ag2O micropowders to novel self-stabilized Ag nanoparticles, J. Phys. Chem. C 112 (2008) 15647- 15655. DOI: 10.1021/jp8056916 Google Scholar [46] H. Q. Wang, A. Pyatenko, K. Kawaguchi, X. Y. Li, Z. Swiatkowska-Wackocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres, Angew. Chem. Int. Ed. 49 (2010) 6361-6364. DOI: 10.1002/anie.201002963 Google Scholar [47] M. Shoji, K. Miyajima, F. Mafune, Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions, J. Phys. Chem. C 112 (2008) 1929-1932. DOI: 10.1021/jp077503c Google Scholar [48] H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, J. Phys. Chem. B 109 (2005) 18260-18266. DOI: 10.1021/jp052258n Google Scholar [49] T. Nishi, N. Suzuki, H. Sugiyama, K. Yano, H. Azuma, High concentration silver nanoparticles stably dispersed in water without chemical reagent, J. Photochem. Photobiol. A 226 (2011) 64-67. DOI: 10.1016/j.jphotochem.2011.10.016 Google Scholar [50] R. Al-Obaidy, A. J. Hadier, S. Al-Musawi, N. Arsad, Study of the Effects of Solution Types on Concentration of Iron Oxide by Pulsed Laser Ablation in Liquid, J. of Applied Science and Nanotechnology 3 (2023) 137-150. DOI: 10.53293/jasn.2022.5025.1172 Google Scholar [51] M. M. Abud, M. M. Azzawi, H. F. Alnaqeeb, A New Technique for Measuring Laser Pulse Energy Using PZT/SiO2, J. of Applied Science and Nanotechnology 3 (2023) 87-96. DOI: 10.53293/jasn.2023.6122.1197 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved