Registration
Log In
For Libraries
For Publication
Downloads
News
About Us
Contact Us
For Libraries
For Publication
Downloads
News
About Us
Contact Us
Search
Paper Titles
Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance
p.1
Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants
p.17
Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study
p.33
Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures
p.49
Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect
p.65
Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3)
p.79
Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy
p.91
HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Production of Cu/Zn Nanoparticles by Pulsed Laser...
Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy
Article Preview
Abstract:
As a preliminary step to establish technology for fabricating High-Entropy Alloys (HEAs) that can make a large-scale HEA using a pulse laser with high peak intensity and high-repetition in the future, we fabricated alloys in which two types of metal atom are mixed close together in the order of nanometers. For the method to produce the alloy, metal alloy nanoparticles were prepared by irradiating the material in liquid with focused high-repetition Q-switched laser pulses using an in-liquid laser ablation method. When brass powder was used as an original material, analysis results by TEM showed that numerous nanoparticles mixed with copper and zinc atoms could be produced. Furthermore, it was clarified by SEM EDS that copper and zinc atoms in the nanoalloy were maintained at a ratio of 3:1 in sintered alloy, and that the atoms were spatially uniformly distributed over a wide range in sintered metal.
Access through your institution
Add to Cart
You might also be interested in these eBooks
View Preview
Info:
Periodical:
Journal of Nano Research (Volume 83)
Pages:
91-108
DOI:
https://doi.org/10.4028/p-Bo8Als
Citation:
Cite this paper
Online since:
July 2024
Authors:
Taku Saiki, Mitsuru Inada
Keywords:
Brass Powder, Cu/Zn Alloy, High-Entropy Alloys (HEA), Laser Ablation in Liquids, Metal nanoparticles
Export:
RIS, BibTeX
Price:
Permissions:
Request Permissions
Share:
- Corresponding Author
References
[1]
Haruyuki Inui, High-Entropy Alloy, Uchidaroukakuho, Tokyo, 2020.
Google Scholar
[2]
S.-H. Joo, J. W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. S. Kim, A. Takeuchi, T. J. Konno, H. Kato, I. V. Okulov, Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design, Adv. Mater. 32 (2020) 1906160.
DOI: 10.1002/adma.202070044
Google Scholar
[3]
C. Haase, F. Tang, M. B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Materials Science and Eng. A 688 (2017)180-189.
DOI: 10.1016/j.msea.2017.01.099
Google Scholar
[4]
B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Boston, 2014, p.1 Chap. 1.
Google Scholar
[5]
X. Lim, Mixed-up metals make for stronger, tougher, stretchier alloys, Nature 533 (2016) 306-307.
DOI: 10.1038/533306a
Google Scholar
[6]
J. W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Yi. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536.
DOI: 10.1007/s11661-006-0234-4
Google Scholar
[7]
B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[8]
B. Gludovatz, A. Hohenwarter, D. Catoor, E. H.Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(2014) 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[9]
O.N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracke, Mechanical properties of Nb25Mo25Ta25W25 andV20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706.
DOI: 10.1016/j.intermet.2011.01.004
Google Scholar
[10]
Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H Nara, A. S. Nugraha, H. Kawamoto, M. Eguchi, T. Liao, Z. Sun, T. Asahi, Y. Yamauchi , Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites, Nature Commun. 14 (2023) Article number: 4182.
DOI: 10.1038/s41467-023-39157-2
Google Scholar
[11]
Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi, K. Hayashi, N. Todoroki, T. Wadayama, Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces, Nature Commun. 14 (2023) Article number: 4492.
DOI: 10.1038/s41467-023-40246-5
Google Scholar
[12]
K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Commun. 12 (2021) Article number: 3884.
DOI: 10.1038/s41467-021-24228-z
Google Scholar
[13]
K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd. 495 (2010) 33-38.
DOI: 10.1016/j.jallcom.2009.12.010
Google Scholar
[14]
S. Praveen, B. S. Murty, R. S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A 534 (2012) 83-89.
DOI: 10.1016/j.msea.2011.11.044
Google Scholar
[15]
W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51 (2013) 854-860.
DOI: 10.1016/j.matdes.2013.04.061
Google Scholar
[16]
Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique, Mater. Des. 44 (2013) 535-539.
DOI: 10.1016/j.matdes.2012.08.048
Google Scholar
[17]
W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24-27.
DOI: 10.1016/j.intermet.2014.08.008
Google Scholar
[18]
Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science 396 (2017) 1420-1426.
DOI: 10.1016/j.apsusc.2016.11.176
Google Scholar
[19]
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36.
DOI: 10.1016/j.scriptamat.2017.02.042
Google Scholar
[20]
R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater. 68 (2013) 813- 816.
DOI: 10.1016/j.scriptamat.2013.01.038
Google Scholar
[21]
Y. Z. Tian, L. J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji, Optimizing strength and ductility in Cu-Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing, J. Mater. Sci. 49 (2014) 6629-6639.
DOI: 10.1007/s10853-014-8299-8
Google Scholar
[22]
Y. Z. Tian, Y. Bai, M. Chen, A. Shibata, D. Terada, N. Tsuji, Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure, Metall. Mater. Trans. A 45 (2014) 5300-5304.
DOI: 10.1007/s11661-014-2552-2
Google Scholar
[23]
Y. Z. Tian, L. J. Zhao, S. Chen, A. Shibata, Z. F. Zhang, N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes, Sci. Rep. 5 (2015), Article number: 16707.
DOI: 10.1038/srep16707
Google Scholar
[24]
R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures, Scripta Mater. 131 (2017) 1-5.
DOI: 10.1016/j.scriptamat.2016.12.024
Google Scholar
[25]
C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nature Commun. 9 (2018) Article number: 1355.
DOI: 10.1038/s41467-018-03734-7
Google Scholar
[26]
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koidzumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng. A 656 (2016) 39-46.
DOI: 10.1016/j.msea.2016.01.019
Google Scholar
[27]
T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett. 189 (2017) 148-151.
DOI: 10.1016/j.matlet.2016.11.026
Google Scholar
[28]
T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Materials Letters 159 (2015) 12-15.
DOI: 10.1016/j.matlet.2015.06.046
Google Scholar
[29]
Y. L. Chou, J. W. Yeh, H. C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corr. Sci. 52 (2010) 2571-2581.
DOI: 10.1016/j.corsci.2010.06.025
Google Scholar
[30]
Y. L. Chou, J. W. Yeh, H. C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67 (2011) 085002.
DOI: 10.5006/1.3613646
Google Scholar
[31]
Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich, X. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544-13549.
DOI: 10.1021/acs.langmuir.8b02837
Google Scholar
[32]
Y. Kudo, M. Suzuki, Al slid-stage Air Cells, JP Patent 147442. (2006).
Google Scholar
[33]
P. Charvin, S. Abanades, F. Lemort, G. Flamant, Hydrogen Production by Three-Step Solar Thermochemical Cycles Using Hydroxides and Metal Oxide Systems, Energy & Fuels 21 (2007) 2919-2928.
DOI: 10.1021/ef0701485
Google Scholar
[34]
D. G. Rowe, Solar-powered lasers, Nature Photonics 4 (2010) 64-65.
Google Scholar
[35]
T. Yabe, T. Okubo, S. Uchida, K. Yoshida, M. Nakatuska, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium, Appl. Phys. Lett. 90 (2007) 261120-261122.
DOI: 10.1063/1.2753119
Google Scholar
[36]
M. S. Mohamed, T. Yabe, C. Baasandash, Y. Sato, Y. Mori, L. Shi-Hua, H. Sato, S. Uchida, Laser- induced magnesium production from magnesium oxide using reducing agents, J. Appl. Phys. 104 (2008) 113110-113116.
DOI: 10.1063/1.2975969
Google Scholar
[37]
T. Saiki, T. Okada, K. Nakamura, T. Karita, Y. Nishikawa, Y. Iida, Air Cells Using Negative Metal Electrodes Fabricated by Sintering Pastes with Base Metal Nanoparticles, Int. J. of Energy Science 2 (2012) 228-234.
Google Scholar
[38]
T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, Y. Iida, Recyclable metal air fuel cells using sintered magnesium pastes with reduced Mg nanoparticles by high-repetitive ns pulse laser ablation in liquid, Int. J. of Sustainable and Green Energy 3 (2014) 143-149.
DOI: 10.1364/cleo_at.2017.jth2a.11
Google Scholar
[39]
T. Okada, T. Saiki, S. Taniguchi, T. Ueda, K. Nakamura, Y. Nishikawa, Y. Iida, Hydrogen Production using Reduced-iron Nanoparticles by Laser Ablation in Liquids, ISRN Renewable Energy 2013 (2013) ID 827681.
DOI: 10.1155/2013/827681
Google Scholar
[40]
T. Saiki, S. Taniguchi, K. Nakamura, Y. Iida, Development of Solar-Pumped Lasers and Its Application, Electrical Engineering in Japan 199 (2017) 3-9.
DOI: 10.1002/eej.22961
Google Scholar
[41]
T. Saiki, Y. Iida, M. Inada, Appearance of ferro-magnetic property for Si nano-polycrystalline body and vanishing of electrical resistances at local high frequencies, J. of Nanomaterials 2018 (2018) ID 9260280.
DOI: 10.1155/2018/9260280
Google Scholar
[42]
G. Cohn, D. Starosvetsky, R. Hagiwara, D. D. Macdonald, Y. Ein-Eli, Silicon-air batteries, Electrochemistry Commun. 11 (2009) 1916-1918.
DOI: 10.1016/j.elecom.2009.08.015
Google Scholar
[43]
A. Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97 (1993) 5457-5471.
DOI: 10.1021/j100123a004
Google Scholar
[44]
M. S. Sibbald, G. humanov, and T. M. Cotton, Reduction of cytochrome c by halide-modified, laser- ablated silver colloids, J. Phys. Chem. 100 (1996) 4672-4678.
DOI: 10.1021/jp953248x
Google Scholar
[45]
M. Kawasaki and N. Nishimura, Laser-induced fragmentative decomposition of ketone-suspended Ag2O micropowders to novel self-stabilized Ag nanoparticles, J. Phys. Chem. C 112 (2008) 15647- 15655.
DOI: 10.1021/jp8056916
Google Scholar
[46]
H. Q. Wang, A. Pyatenko, K. Kawaguchi, X. Y. Li, Z. Swiatkowska-Wackocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres, Angew. Chem. Int. Ed. 49 (2010) 6361-6364.
DOI: 10.1002/anie.201002963
Google Scholar
[47]
M. Shoji, K. Miyajima, F. Mafune, Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions, J. Phys. Chem. C 112 (2008) 1929-1932.
DOI: 10.1021/jp077503c
Google Scholar
[48]
H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, J. Phys. Chem. B 109 (2005) 18260-18266.
DOI: 10.1021/jp052258n
Google Scholar
[49]
T. Nishi, N. Suzuki, H. Sugiyama, K. Yano, H. Azuma, High concentration silver nanoparticles stably dispersed in water without chemical reagent, J. Photochem. Photobiol. A 226 (2011) 64-67.
DOI: 10.1016/j.jphotochem.2011.10.016
Google Scholar
[50]
R. Al-Obaidy, A. J. Hadier, S. Al-Musawi, N. Arsad, Study of the Effects of Solution Types on Concentration of Iron Oxide by Pulsed Laser Ablation in Liquid, J. of Applied Science and Nanotechnology 3 (2023) 137-150.
DOI: 10.53293/jasn.2022.5025.1172
Google Scholar
[51]
M. M. Abud, M. M. Azzawi, H. F. Alnaqeeb, A New Technique for Measuring Laser Pulse Energy Using PZT/SiO2, J. of Applied Science and Nanotechnology 3 (2023) 87-96.
DOI: 10.53293/jasn.2023.6122.1197
Google Scholar
Cited by
Related Articles
Citation
Added To Cart
This paper has been added to your cart
To Shop
To Cart
For Libraries
For Publication
Insights
Downloads
About Us
Policy & Ethics
Contact Us
Imprint
Privacy Policy
Sitemap
All Conferences
All Special Issues
All News
Read & Publish Agreements
Scientific.Net is a registered brand of Trans Tech Publications Ltd
© 2024 by Trans Tech Publications Ltd. All Rights Reserved