《Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-25






















  • Registration


    Log In
























    For Libraries
    For Publication
    Downloads
    News
    About Us
    Contact Us






    For Libraries
    For Publication
    Downloads
    News
    About Us
    Contact Us





    Search





















    Paper Titles








    Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance

    p.1









    Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants

    p.17









    Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study

    p.33









    Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures

    p.49









    Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect

    p.65









    Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3)

    p.79









    Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy

    p.91










    HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Production of Cu/Zn Nanoparticles by Pulsed Laser...

    Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy


















    Article Preview








    Abstract:

    As a preliminary step to establish technology for fabricating High-Entropy Alloys (HEAs) that can make a large-scale HEA using a pulse laser with high peak intensity and high-repetition in the future, we fabricated alloys in which two types of metal atom are mixed close together in the order of nanometers. For the method to produce the alloy, metal alloy nanoparticles were prepared by irradiating the material in liquid with focused high-repetition Q-switched laser pulses using an in-liquid laser ablation method. When brass powder was used as an original material, analysis results by TEM showed that numerous nanoparticles mixed with copper and zinc atoms could be produced. Furthermore, it was clarified by SEM EDS that copper and zinc atoms in the nanoalloy were maintained at a ratio of 3:1 in sintered alloy, and that the atoms were spatially uniformly distributed over a wide range in sintered metal.










    Access through your institution





    Add to Cart









    You might also be interested in these eBooks






    View Preview






    Info:






    Periodical:




    Journal of Nano Research (Volume 83)








    Pages:




    91-108








    DOI:




    https://doi.org/10.4028/p-Bo8Als








    Citation:




    Cite this paper








    Online since:




    July 2024








    Authors:






    Taku Saiki, Mitsuru Inada







    Keywords:




    Brass Powder, Cu/Zn Alloy, High-Entropy Alloys (HEA), Laser Ablation in Liquids, Metal nanoparticles







    Export:




    RIS, BibTeX








    Price:













    Permissions:







    Request Permissions










    Share:



























    - Corresponding Author











    References








    [1]
    Haruyuki Inui, High-Entropy Alloy, Uchidaroukakuho, Tokyo, 2020.

    Google Scholar



    [2]
    S.-H. Joo, J. W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. S. Kim, A. Takeuchi, T. J. Konno, H. Kato, I. V. Okulov, Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design, Adv. Mater. 32 (2020) 1906160.


    DOI: 10.1002/adma.202070044

    Google Scholar



    [3]
    C. Haase, F. Tang, M. B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Materials Science and Eng. A 688 (2017)180-189.


    DOI: 10.1016/j.msea.2017.01.099

    Google Scholar



    [4]
    B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Boston, 2014, p.1 Chap. 1.

    Google Scholar



    [5]
    X. Lim, Mixed-up metals make for stronger, tougher, stretchier alloys, Nature 533 (2016) 306-307.


    DOI: 10.1038/533306a

    Google Scholar



    [6]
    J. W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Yi. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35 (2004) 2533-2536.


    DOI: 10.1007/s11661-006-0234-4

    Google Scholar



    [7]
    B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218.


    DOI: 10.1016/j.msea.2003.10.257

    Google Scholar



    [8]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E. H.Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(2014) 1153-1158.


    DOI: 10.1126/science.1254581

    Google Scholar



    [9]
    O.N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracke, Mechanical properties of Nb25Mo25Ta25W25 andV20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706.


    DOI: 10.1016/j.intermet.2011.01.004

    Google Scholar



    [10]
    Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H Nara, A. S. Nugraha, H. Kawamoto, M. Eguchi, T. Liao, Z. Sun, T. Asahi, Y. Yamauchi , Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites, Nature Commun. 14 (2023) Article number: 4182.


    DOI: 10.1038/s41467-023-39157-2

    Google Scholar



    [11]
    Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi, K. Hayashi, N. Todoroki, T. Wadayama, Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces, Nature Commun. 14 (2023) Article number: 4492.


    DOI: 10.1038/s41467-023-40246-5

    Google Scholar



    [12]
    K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Commun. 12 (2021) Article number: 3884.


    DOI: 10.1038/s41467-021-24228-z

    Google Scholar



    [13]
    K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, S. W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd. 495 (2010) 33-38.


    DOI: 10.1016/j.jallcom.2009.12.010

    Google Scholar



    [14]
    S. Praveen, B. S. Murty, R. S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A 534 (2012) 83-89.


    DOI: 10.1016/j.msea.2011.11.044

    Google Scholar



    [15]
    W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Des., 51 (2013) 854-860.


    DOI: 10.1016/j.matdes.2013.04.061

    Google Scholar



    [16]
    Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique, Mater. Des. 44 (2013) 535-539.


    DOI: 10.1016/j.matdes.2012.08.048

    Google Scholar



    [17]
    W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics 56 (2015) 24-27.


    DOI: 10.1016/j.intermet.2014.08.008

    Google Scholar



    [18]
    Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science 396 (2017) 1420-1426.


    DOI: 10.1016/j.apsusc.2016.11.176

    Google Scholar



    [19]
    S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36.


    DOI: 10.1016/j.scriptamat.2017.02.042

    Google Scholar



    [20]
    R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater. 68 (2013) 813- 816.


    DOI: 10.1016/j.scriptamat.2013.01.038

    Google Scholar



    [21]
    Y. Z. Tian, L. J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji, Optimizing strength and ductility in Cu-Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing, J. Mater. Sci. 49 (2014) 6629-6639.


    DOI: 10.1007/s10853-014-8299-8

    Google Scholar



    [22]
    Y. Z. Tian, Y. Bai, M. Chen, A. Shibata, D. Terada, N. Tsuji, Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure, Metall. Mater. Trans. A 45 (2014) 5300-5304.


    DOI: 10.1007/s11661-014-2552-2

    Google Scholar



    [23]
    Y. Z. Tian, L. J. Zhao, S. Chen, A. Shibata, Z. F. Zhang, N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes, Sci. Rep. 5 (2015), Article number: 16707.


    DOI: 10.1038/srep16707

    Google Scholar



    [24]
    R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures, Scripta Mater. 131 (2017) 1-5.


    DOI: 10.1016/j.scriptamat.2016.12.024

    Google Scholar



    [25]
    C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, P. D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nature Commun. 9 (2018) Article number: 1355.


    DOI: 10.1038/s41467-018-03734-7

    Google Scholar



    [26]
    H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koidzumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng. A 656 (2016) 39-46.


    DOI: 10.1016/j.msea.2016.01.019

    Google Scholar



    [27]
    T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett. 189 (2017) 148-151.


    DOI: 10.1016/j.matlet.2016.11.026

    Google Scholar



    [28]
    T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Materials Letters 159 (2015) 12-15.


    DOI: 10.1016/j.matlet.2015.06.046

    Google Scholar



    [29]
    Y. L. Chou, J. W. Yeh, H. C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corr. Sci. 52 (2010) 2571-2581.


    DOI: 10.1016/j.corsci.2010.06.025

    Google Scholar



    [30]
    Y. L. Chou, J. W. Yeh, H. C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67 (2011) 085002.


    DOI: 10.5006/1.3613646

    Google Scholar



    [31]
    Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich, X. Du, Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene, Langmuir 34 (2018) 13544-13549.


    DOI: 10.1021/acs.langmuir.8b02837

    Google Scholar



    [32]
    Y. Kudo, M. Suzuki, Al slid-stage Air Cells, JP Patent 147442. (2006).

    Google Scholar



    [33]
    P. Charvin, S. Abanades, F. Lemort, G. Flamant, Hydrogen Production by Three-Step Solar Thermochemical Cycles Using Hydroxides and Metal Oxide Systems, Energy & Fuels 21 (2007) 2919-2928.


    DOI: 10.1021/ef0701485

    Google Scholar



    [34]
    D. G. Rowe, Solar-powered lasers, Nature Photonics 4 (2010) 64-65.

    Google Scholar



    [35]
    T. Yabe, T. Okubo, S. Uchida, K. Yoshida, M. Nakatuska, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium, Appl. Phys. Lett. 90 (2007) 261120-261122.


    DOI: 10.1063/1.2753119

    Google Scholar



    [36]
    M. S. Mohamed, T. Yabe, C. Baasandash, Y. Sato, Y. Mori, L. Shi-Hua, H. Sato, S. Uchida, Laser- induced magnesium production from magnesium oxide using reducing agents, J. Appl. Phys. 104 (2008) 113110-113116.


    DOI: 10.1063/1.2975969

    Google Scholar



    [37]
    T. Saiki, T. Okada, K. Nakamura, T. Karita, Y. Nishikawa, Y. Iida, Air Cells Using Negative Metal Electrodes Fabricated by Sintering Pastes with Base Metal Nanoparticles, Int. J. of Energy Science 2 (2012) 228-234.

    Google Scholar



    [38]
    T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, Y. Iida, Recyclable metal air fuel cells using sintered magnesium pastes with reduced Mg nanoparticles by high-repetitive ns pulse laser ablation in liquid, Int. J. of Sustainable and Green Energy 3 (2014) 143-149.


    DOI: 10.1364/cleo_at.2017.jth2a.11

    Google Scholar



    [39]
    T. Okada, T. Saiki, S. Taniguchi, T. Ueda, K. Nakamura, Y. Nishikawa, Y. Iida, Hydrogen Production using Reduced-iron Nanoparticles by Laser Ablation in Liquids, ISRN Renewable Energy 2013 (2013) ID 827681.


    DOI: 10.1155/2013/827681

    Google Scholar



    [40]
    T. Saiki, S. Taniguchi, K. Nakamura, Y. Iida, Development of Solar-Pumped Lasers and Its Application, Electrical Engineering in Japan 199 (2017) 3-9.


    DOI: 10.1002/eej.22961

    Google Scholar



    [41]
    T. Saiki, Y. Iida, M. Inada, Appearance of ferro-magnetic property for Si nano-polycrystalline body and vanishing of electrical resistances at local high frequencies, J. of Nanomaterials 2018 (2018) ID 9260280.


    DOI: 10.1155/2018/9260280

    Google Scholar



    [42]
    G. Cohn, D. Starosvetsky, R. Hagiwara, D. D. Macdonald, Y. Ein-Eli, Silicon-air batteries, Electrochemistry Commun. 11 (2009) 1916-1918.


    DOI: 10.1016/j.elecom.2009.08.015

    Google Scholar



    [43]
    A. Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97 (1993) 5457-5471.


    DOI: 10.1021/j100123a004

    Google Scholar



    [44]
    M. S. Sibbald, G. humanov, and T. M. Cotton, Reduction of cytochrome c by halide-modified, laser- ablated silver colloids, J. Phys. Chem. 100 (1996) 4672-4678.


    DOI: 10.1021/jp953248x

    Google Scholar



    [45]
    M. Kawasaki and N. Nishimura, Laser-induced fragmentative decomposition of ketone-suspended Ag2O micropowders to novel self-stabilized Ag nanoparticles, J. Phys. Chem. C 112 (2008) 15647- 15655.


    DOI: 10.1021/jp8056916

    Google Scholar



    [46]
    H. Q. Wang, A. Pyatenko, K. Kawaguchi, X. Y. Li, Z. Swiatkowska-Wackocka, N. Koshizaki, Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres, Angew. Chem. Int. Ed. 49 (2010) 6361-6364.


    DOI: 10.1002/anie.201002963

    Google Scholar



    [47]
    M. Shoji, K. Miyajima, F. Mafune, Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions, J. Phys. Chem. C 112 (2008) 1929-1932.


    DOI: 10.1021/jp077503c

    Google Scholar



    [48]
    H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media, J. Phys. Chem. B 109 (2005) 18260-18266.


    DOI: 10.1021/jp052258n

    Google Scholar



    [49]
    T. Nishi, N. Suzuki, H. Sugiyama, K. Yano, H. Azuma, High concentration silver nanoparticles stably dispersed in water without chemical reagent, J. Photochem. Photobiol. A 226 (2011) 64-67.


    DOI: 10.1016/j.jphotochem.2011.10.016

    Google Scholar



    [50]
    R. Al-Obaidy, A. J. Hadier, S. Al-Musawi, N. Arsad, Study of the Effects of Solution Types on Concentration of Iron Oxide by Pulsed Laser Ablation in Liquid, J. of Applied Science and Nanotechnology 3 (2023) 137-150.


    DOI: 10.53293/jasn.2022.5025.1172

    Google Scholar



    [51]
    M. M. Abud, M. M. Azzawi, H. F. Alnaqeeb, A New Technique for Measuring Laser Pulse Energy Using PZT/SiO2, J. of Applied Science and Nanotechnology 3 (2023) 87-96.


    DOI: 10.53293/jasn.2023.6122.1197

    Google Scholar
















    Cited by


















    Related Articles




















    Citation










    Added To Cart






    This paper has been added to your cart









    To Shop


    To Cart



















    For Libraries
    For Publication
    Insights
    Downloads
    About Us
    Policy & Ethics
    Contact Us
    Imprint
    Privacy Policy
    Sitemap
    All Conferences
    All Special Issues
    All News
    Read & Publish Agreements























    Scientific.Net is a registered brand of Trans Tech Publications Ltd
    © 2024 by Trans Tech Publications Ltd. All Rights Reserved

















  • 原文来源:https://www.scientific.net/JNanoR.83.91
相关报告
  • 《Al-Zn-Mg-Cu合金在溶液处理和冷轧后时效期间的拉伸性能、微观结构和断裂行为》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-07-17
    • 研究了铝锌镁铜合金在溶液处理和冷轧后时效过程中的拉伸性能、微观组织和断裂行为。拉伸结果表明,该合金可以同时获得高强度和可接受的延性。由于高密度位错的组合,增加了滚动纹理,细化晶粒和纳米级的沉淀,改变了沉淀特性,降低了位错密度。提高延性的主要原因是位错密度的降低,同时也受到降水特性的影响。拉伸断裂以韧窝诱导的跨晶断裂为主,并伴有少量的晶粒间断裂。 ——文章发布于2018年3月27日
  • 《Al-5.1Mg-0.15Cu-xZn合金的溶质聚集和沉淀》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-20
    • AlMgZn相(T相) - 沉淀硬化铝合金中令人感兴趣的强化相未得到足够的重视,并且与通常研究的η-MgZn2相非常不同。本研究的重点是Zn-Mg比率低于1.0的Al-5.1Mg-0.15Cu-xZn合金。这与通常已知的Zn / Mg比大于2.0的7xxx系列合金不同。通过原子探针断层扫描和透射电子显微镜研究了Al-5.1Mg-0.15Cu-xZn合金的时效硬化响应行为,Mg-Zn或Mg-Cu原子聚集,以及不同硬化相的析出之间的关系。根据结果??,Zn的加入刺激了相干T“析出物的沉淀,但抑制了S-Al2CuMg和β-Al3Mg2相。这导致具有高Zn含量的合金中的时效硬化响应增强和加速。具有更细T“析出物的3.0Zn(重量%)合金表现出最佳的时效硬化响应,接着是具有T'析出物的2.0Zn(重量%)合金和具有T沉淀物的1.0Zn(重量%)合金。 。具有高Mg /(Al + Zn + Cu)比的团簇不能作为将Mg-Zn团簇转变成T“沉淀物的有效前体,从而导致较弱的时效硬化响应和较低的1.0Zn硬度(wt。 %) 合金。此外,尽管T相来自不同的合金,但是对于较大的颗粒尺寸,它们的Mg /(Al + Zn + Cu)比率达到恒定值3/7。这挑战了传统平衡T沉淀物的化学组成。 ——文章发布于2019年5月17日