《bioRxiv,6月9日,The hypothalamus as a hub for putative SARS-CoV-2 brain infection》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-06-10
  • The hypothalamus as a hub for putative SARS-CoV-2 brain infection

    Sreekala Nampoothiri, Florent Sauve, Gaetan Ternier, Daniela Fernandois, Caio Coelho, Monica Imbernon, Eleonora Deligia, Romain Perbet, Vincent Florent, Marc Baroncini, Florence Pasquier, Francois Trottein, Claude-Alain Maurage, Virginie Mattot, Paolo Giacobini, S. Rasika, View ORCID ProfileVincent Prevot

    doi: https://doi.org/10.1101/2020.06.08.139329

    Abstract

    Most patients with COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), display neurological symptoms, and respiratory failure in certain cases could be of extra-pulmonary origin. With reports detecting SARS-CoV-2 in some post-mortem patient brains, the routes, targets and consequences of brain infection merit investigation. Hypothalamic neural circuits play key roles in sex differences, diabetes, hypertension, obesity and aging, all risk factors for severe COVID-19, besides being connected to brainstem cardiorespiratory centers. Here, human brain gene-expression analyses reveal that the hypothalamus and associated regions express angiotensin-converting enzyme 2 and transmembrane proteinase, serine 2, which mediate SARS-CoV-2 cellular entry, in correlation with several genes or pathways involved in physiological functions or viral pathogenesis. Immunolabeling in human and animal brains suggests that the hypothalamus could be central to SARS-CoV-2 brain invasion through multiple routes, and that sex hormones and metabolic diseases influence brain susceptibility.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.06.08.139329v1
相关报告
  • 《bioRxiv,6月6日,Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-09
    • Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells Shane Miersch, Mart Ustav, Zhijie Li, James B. Case, Safder Ganaie, Giulia Matusali, Francesca Colavita, Daniele Lapa, Maria R. Capobianchi, View ORCID ProfileGuiseppe Novelli, Jang B. Gupta, Suresh Jain, Pier Paolo Pandolfi, Michael S. Diamond, Gaya Amarasinghe, James M. Rini, Sachdev S. Sidhu doi: https://doi.org/10.1101/2020.06.05.137349 Abstract Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds but have crossed the species barrier to infect humans seven times. Of these, three pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV), and now SARS-CoV-2 coronaviruses, the latter of which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Here, we describe a panel of synthetic monoclonal antibodies, built on a human framework, that bind SARS-CoV-2 spike protein, compete for binding with ACE2, and potently inhibit infection by SARS-CoV-2. These antibodies were found to have a range of neutralization potencies against live virus infection in Vero E6 cells, potently inhibiting authentic SARS-CoV-2 virus at sub-nanomolar concentrations. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19. Competing Interest Statement S.S, P.P.P and S.J, are cofounders of Virna Therapeutics. The company is developing novel therapies for COVID-19 and other viruses.
  • 《bioRxiv,6月9日,Structural basis of a public antibody response to SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-10
    • Structural basis of a public antibody response to SARS-CoV-2 View ORCID ProfileMeng Yuan, Hejun Liu,  View ORCID ProfileNicholas C. Wu,  View ORCID ProfileChang-Chun D. Lee,  View ORCID ProfileXueyong Zhu,  View ORCID ProfileFangzhu Zhao,  View ORCID ProfileDeli Huang, Wenli Yu, Yuanzi Hua, Henry Tien, Thomas F. Rogers, Elise Landais, Devin Sok, Joseph G. Jardine, Dennis R. Burton, Ian A. Wilson doi: https://doi.org/10.1101/2020.06.08.141267 Abstract Molecular-level understanding of human neutralizing antibody responses to SARS-CoV-2 could accelerate vaccine design and facilitate drug discovery. We analyzed 294 SARS-CoV-2 antibodies and found that IGHV3-53 is the most frequently used IGHV gene for targeting the receptor binding domain (RBD) of the spike (S) protein. We determined crystal structures of two IGHV3-53 neutralizing antibodies +/- Fab CR3022 ranging from 2.33- to 3.11-angstrom resolution. The germline-encoded residues of IGHV3-53 dominate binding to the ACE2 binding site epitope with no overlap with the CR3022 epitope. Moreover, IGHV3-53 is used in combination with a very short CDR H3 and different light chains. Overall, IGHV3-53 represents a versatile public VH in neutralizing SARS-CoV-2 antibodies, where their specific germline features and minimal affinity maturation provide important insights for vaccine design and assessing outcomes.