《发现富镍材料的阴极退化原因》

  • 来源专题:重大科技基础设施领域知识集成服务平台
  • 编译者: 魏韧
  • 发布时间:2019-11-08
  • 一个由美国能源部(DOE)布鲁克海文国家实验室和斯坦福直线加速器中心(SLAC)国家加速器实验室研究人员组成的科学家团队找到了锂离子电池阴极材料性能降低的原因以及可能的补救措施。该研究成果于3月7日发表在《先进的功能材料》(Advanced Functional Materials) 上。该发现将有助于开发更便宜、性能更好的电动汽车电池。

    要使电动汽车具有与汽油汽车相同的可靠性,就需要给其配备轻便且功能更强大的电池。锂离子电池是当今电动汽车中最常见的电池类型,但是其高成本和有限的寿命阻碍了电动汽车的普及。为了克服这一挑战,美国能源部国家实验室的科学家正在研究改进传统锂离子电池的方法。

    多年来锂钴氧化物一直被用作锂离子电池的阴极。尽管钴在小型储能系统中得到了成功应用,但其成本和毒性限制了其在大型储能系统中推广的进程。现在研究人员正在研究如何在不损害材料性能的情况下,采用更安全、更平价的元素代替钴。研究电池多次充放电循环之后,富镍系层状材料退化的原因,并提供可能的解决方案。

    对于富镍系材料,退化主要表现为容量衰减,科学家使用多种研究技术,从不同的角度对材料进行评估。在循环过程中,富镍系材料的性质可以在不同的长度尺度上发生变化,需要了解在充放电过程中,材料的结构如何在原子尺度上发生物理变化以及化学变化。

    研究组在布鲁克海文的国家同步辐射光源II(NSLS-II)和SLAC国家加速器实验室的斯坦福同步辐射光源(SSRL)上对这种材料进行了表征,使用了X射线吸收光谱(XAS)技术揭示材料中活性金属离子周围环境的原子图像。”

    研究发现,该材料具有坚固的结构,不会从大块物质中释放氧气,这颠覆了先前的认知,而应变和局部失调大多与镍有关。通过绘制该材料中的化学分布,并应用机器学习方法对数据进行分类,发现在整个粒子中镍原子的氧化态有非常不均匀。粒子内部的一些镍保持氧化状态,很可能失去活性,而表面的镍则不可逆转地减少,降低了电池的效率。另外,在电池充放电过程中,阴极材料膨胀和收缩,产生应力,如果这种应力不能迅速有效释放,那么材料结构内部就会出现裂缝。

    科学家们认为可以通过合成一种中空结构的新材料来解决这个问题。他们通过实验和计算确认了这一设想。

  • 原文来源:https://www.bnl.gov/newsroom/news.php?a=114414
相关报告
  • 《德国KIT研发出高能阴极材料将电池容量提高30%》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-12-16
    • 近日,卡尔斯鲁厄理工学院(KIT)和合作机构的研究人员研究了用于未来高能锂离子电池的阴极材料合成过程中的结构变化,并获得了有关降解机理的新发现。他们的发现有助于开发更高容量的电池,从而增加电动汽车的行驶距离。 迄今为止,电力不足造成的行驶距离短阻碍了电动汽车的突破,而充电容量增加的锂离子电池将有助于解决这个老大难。应用材料-储能系统研究所(IAM-ESS)负责人Helmut Ehrenberg教授说:“我们正在开发这种高能系统,基于对电池电化学过程的基本理解,并通过创新地使用新材料,我们认为锂离子电池的存储容量可以增加30%”。这项研究是在德国最大的电化学储能研究平台Ulm&Karlsruhe的电化学储能中心进行的。 高能锂离子技术与传统技术的区别在于特定的阴极材料。与迄今为止所使用的镍、锰和钴的不同比例的层状氧化物不同,采用含过量锂的富锰材料,能大大提高阴极材料的单位体积/质量储能能力。不过,这些材料的使用一直存在问题。 在锂离子的插入和提取过程中,即电池的基本功能过程中,高能阴极材料会发生降解。经过一定时间后,层状氧化物转变为具有高度不利电化学性能的晶体结构。结果是,平均充放电电压从一开始就降低了,这就阻碍了高能锂离子电池的发展。 研究人员现已在《自然通讯》中描述了降解的基本原理:“基于对高能阴极材料的详细研究,我们发现降解不是直接发生的,而是通过形成迄今几乎未发现的含锂岩石盐结构而间接发生的。此外,氧气在反应中起着重要作用。” 除这些结果外,研究还表明,有关电池技术性能的新发现不一定必须直接从降解过程中得出,相关科学家在合成阴极材料的研究中发现了它们。 卡尔斯鲁厄理工学院的发现标志着电动车高能锂离子电池发展道路上的一个重要里程碑。 
  • 《.突破 | 我国科学家发现光阴极“量子”材料》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-03-15
    • 近日,西湖大学理学院何睿华课题组连同研究合作者一起,发现了世界首例具有本征相干性的光阴极量子材料,其性能远超传统的光阴极材料,且无法为现有理论所解释,为光阴极研发、应用与基础理论发展打开了新的天地。 摄影师镜头下,首例具有本征相干性的光阴极量子材料:钛酸锶 普通光阴极材料(a)和光阴极量子材料钛酸锶(b)所发射的初始电子束的区别 相关论文《一种钙钛矿氧化物上的反常强烈相干二次光电子发射》,已提前在线发表于《自然》期刊。西湖大学博士研究生洪彩云、邹文俊和冉鹏旭为论文共同第一作者,西湖大学理学院终身副教授何睿华为通讯作者。 1887年,德国物理学家赫兹在实验中意外发现,紫外线照射到金属表面电极上会产生火花。1905年,爱因斯坦基于光的量子化猜想,提出了对该现象的理论解释。这标志着量子力学大门的正式开启。由此,将“光”转化为“电”的“光电效应”,以及能够产生这个效应的“光阴极”材料,正式进入人类的视野。 “这些光阴极材料基本上都是传统金属和半导体材料,大多数在60年前被发现。它们已成为当代粒子加速器、自由电子激光、超快电镜、高分辨电子谱仪等尖端科技装置的核心元件。”何睿华表示,然而,这些传统材料存在固有的性能缺陷——它们所发射的电子束“相干性”太差,也就是说,电子束的发射角太大,其中的电子运动速度不均一。这样的“初始”电子束要想满足尖端科技应用的要求,必须依赖一系列材料工艺和电气工程技术来增强它的相干性,而这些特殊工艺和辅助技术的引入极大地增加了“电子枪”系统的复杂度,提高了建造要求和成本。 尽管基于光阴极的电子枪技术最近几十年来有了长足的发展,但已渐渐无法跟上相关科技应用发展的步伐。许多前述尖端科技的升级换代呼唤初始电子束相干性在数量级上的提升,而这已经不是一般的光阴极性能优化所能实现的了,只能寄望于在材料和理论层面上的源头创新。 深耕材料物理性质研究的西湖大学理学院何睿华团队,意外在一个同类物理实验室中“常见”的量子材料——钛酸锶上实现了突破。 此前以钛酸锶为首的氧化物量子材料研究,主要是将这些材料当作硅基半导体的潜在替代材料来研究,但何睿华团队却通过一种强大的、但很少被应用于光阴极研究的实验手段:角分辨光电子能谱技术,出乎意料地捕捉到这些熟悉的材料竟然同样承载着触发新奇光电效应的能力——它有着远超于现有光阴极材料的光阴极关键性能:相干性,且无法为现有光电发射理论所解释。 超快电镜专家、论文合作者、西湖大学理学院研究员郑昌喜认为,合作团队的这一发现,其重要性不在于往钛酸锶的神奇性质列表增添了一个新的性质,而在于这个性质本身,它可能重启一个极其重要、被普遍认为已发展成熟的光阴极技术领域,改变许多早已根深蒂固的游戏规则。 记者了解到,接下来,该团队将在理论和应用方面开展对相关材料的进一步研究工作。