《Nature | portimine的合成揭示了其抗癌活性的基础》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-21
  • 2023年9月20日,斯克利普斯研究所Phil Baran教授领导的研究团队在Nature上发表题为Synthesis of portimines reveals the basis of their anti-cancer activity的文章。

    研究实现了portimine的可规模化合成,并且进一步揭示了PA具有抗癌活性的结构基础以及作用机制,提出了癌症治疗的潜在新靶点。



    本文内容转载自“学术经纬”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/BKHqCVDym2iZp59db5hUuA

  • 原文来源:https://www.nature.com/articles/s41586-023-06535-1
相关报告
  • 《Nature | DNA修复蛋白激活cGAS抗癌》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-13
    • 2024年1月10日,北卡罗来纳大学教堂山分校Gaorav P. Gupta在Nature发表题为MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis的文章,揭示了DNA修复蛋白MRE11在乳腺癌中的意外抑制肿瘤的作用。通过CRISPR筛选,作者鉴定MRE11是限制肿瘤发生的因子之一。机制研究揭示,MRE11不是通过其经典的DNA双链断裂修复功能,而是通过促进细胞质DNA感应器cGAS和下游先天免疫信号的激活来抑制肿瘤形成。 作者首先证明Mre11的敲除通过减弱G2/M检查点并导致基因组不稳定性增强,加速了小鼠乳腺肿瘤的发生。然后他们进一步表明,MRE11通过促进cGAS-STING胞质DNA感应途径的激活,在过表达MYC并且缺乏p53的乳腺上皮细胞中促使p53独立的细胞周期停滞。具体内容上MRE11上调了干扰素刺激基因并诱导细胞静止。 接下来,作者阐明了MRE11如何在响应胞质DNA和由致癌应激引起的微核(micronuclei)形成时激活cGAS。尽管cGAS可以直接结合双链DNA,但其活性在与微核中富集的核小体的高亲和力结合时被强烈抑制。作者证明MRE11-RAD50-NBS1(MRN)复合物与核小体片段的结合使cGAS从核小体中解离,从而使其能够被胞质DNA激活。他们通过生化实验证明,MRN破坏了cGAS-核小体的结合以及cGAS依赖的核小体堆叠。对MRE11的CRISPR敲除影响了cGAS对转染DNA、电离辐射诱导的微核以及复制应激的激活。 最后,作者阐述了MRE11-cGAS-STING信号如何通过激活坏死样细胞死亡效应子ZBP1来抑制肿瘤发生。单细胞RNA测序显示,在MRE11依赖的情况下,G1阻滞的乳腺上皮细胞中富集了Zbp1和其他炎性基因。对MRE11、cGAS或ZBP1进行敲除或药物抑制减弱了坏死样细胞死亡和免疫激活。对人类乳腺癌的分析表明,低ZBP1表达,可能是MRE11-cGAS-ZBP1信号缺陷的一个指标,与增加的基因组不稳定性和降低的存活率相关——特别是在三阴性乳腺癌中。 总之,这项研究揭示了DNA损伤的先天免疫感知如何作为一个关键的肿瘤抑制机制,而对MRE11-cGAS-ZBP1轴的损害则促进了对致癌应激的耐受性。作者确立了MRE11作为连接DNA修复与胞质监视途径激活的关键介质。
  • 《上海交大陈功友团队在Nature Communications发文揭示植物病原菌拮抗活性物吡唑三嗪的生物合成与调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-25
    • 植物在生长发育过程中受到各种病原菌的侵染危害,导致植物死亡和造成显著经济损失。农作物抗病育种和使用绿色农药是防控作物重大致灾病害的有效途径,而绿色农药可以来自植物生长环境中产生抗生素的生防微生物。2023年2月9日,Nature子刊Nature Communications在线发表上海交通大学农业与生物学院陈功友教授和生命科学技术学院林双君教授联合团队的“The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens”研究论文,揭示了摩氏假单胞菌923菌株产生天然抗生素吡唑三嗪pseudoiodinine的生物合成与调控机制。 水稻是我国和世界上的主要粮食作物之一,但由稻黄单胞菌(Xanthomonas oryzae)和稻瘟病菌(Magnaporthe oryzae)引起的水稻白叶枯病、条斑病和稻瘟病是水稻上的重要致灾病害。该研究工作科学假说认为,对这些致灾病害病原菌产生抗生素活性的生防微生物应当来自水稻田生态环境。经过大量筛选,从水稻根际土壤中分离获得了一株高效拮抗植物病原黄单胞菌和稻瘟病菌的摩式假单胞菌923菌株,鉴定其产生的拮抗物质为吡唑三嗪(pseudoiodinine),其由7个基因组成的psdABCDEFG操纵元决定生物合成;三磷酸鸟苷(guanosine triphosphate,GTP)是其生物合成的前体化合物,1,6-didesmethyltoxo?avin (1,6-DDMT)是其合成的中间体;GacA-rsmY/Z-CsrA1/2/3模块调控pseudoiodinine的生物合成。对GacA-rsmY/Z-CsrA1/2/3的CsrA1/2/3进行缺失,构建了高产pseudoiodinine的植物病害生防工程菌(图1)。 Pseudoiodinine是一种含多个氮原子的杂环分子,最早报道假单胞菌(P. fluorescens var. pseudoiodinum)可产生,但未见其遗传学、生物合成与调控机制的揭示。Pseudoiodinine具有吡唑[4,3-e][1,2,4]三嗪(Pyrazolo[4,3-e][1,2,4]triazine)特征核心骨架,该化合物及其衍生物如诺斯托辛A(Nostocine A)和氟维奥A(Fluviol A)还具有抗菌、抗病毒、抗肿瘤、延缓动脉粥样硬化等活性,具有成药潜力。 重要的是,本研究发现Pseudoiodinine对多种植物病原黄单胞菌均具有抑制作用,其中包括柑橘溃疡病菌(X. citri subsp. citri)、大豆斑疹病菌(X. axonopodis pv. glycines)、棉花角斑病菌(X. campestris pv. malvacearum)、麦类黄单胞菌(X. translucens pathovars)、辣椒斑点病菌(X. campestris pv. vesicatoria)等。对白叶枯病菌和条斑病菌的抑菌活性最强,MIC值分别为0.5 μg mL?1和4 μg mL?1,EC50值分别为0.17 μg mL?1和1.36 μg mL?1。对稻瘟病菌的EC50为4.48 μg mL?1。温室和田间防控试验显示,923菌株和pseudoiodinine在病害预防和治疗方面,均能对白叶枯病和条斑病进行有效防控,防病效果达70%以上(图2、图3)。 这些研究结果为利用摩氏假单胞菌923菌株生物防治作物细菌和真菌病害提供了一种新思路,并且吡唑三嗪(pseudoiodinine)作为一种新型绿色生物农药或先导化合物用于植物细菌和真菌病害的防控,或者未来动物肿瘤治疗药物研发,均具有潜在的重大应用价值。 上海交通大学农业与生物学院博士后杨瑞环和生命科学技术学院博士后石清为论文的共同第一作者,邹丽芳副教授和陈功友教授为论文的共同通讯作者。上海交通大学生命科学技术学院林双君教授和黄婷婷副研究员指导了该项研究,上海交通大学农业与生物长聘教轨副教授范江波博士参与了该项研究。该研究得到了国家重点研发计划(2022YFD1400200, 2017YFD0200400)、国家自然科学基金重点项目(31830072)和上海市科技兴农项目(2020‐02‐08‐00‐08‐F01462)的资助。 论文链接:https://doi.org/10.1038/s41467-023-36433-z