《上海硅酸盐所在新型高功率储能电极材料研究方面取得系列进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-07-28
  • 国际激烈竞争的高功率储能装备急需超高效能电源。锂离子电池和超级电容器是储能原理不同、各有特点的两类代表性储能器件。锂电池能量密度高(~250 Wh kg-1),但功率密度偏低(<1 kW kg-1),而超级电容器功率密度高(~15 kW kg-1)但能量密度过低(<20 Wh kg-1)。超越上述两类储能器件的储能极限,发展兼具高能量密度和高功率密度储能器件的新型电极材料,是化学储能领域极具挑战性的世界性难题。中国科学院上海硅酸盐研究所先进材料与新能源应用研究团队近期在高比电容少层介孔碳电极材料的宏量制备方法、极速储放能的高比容量黑色二氧化钛电极材料、超高倍率电容式储能的纳孔氧化铌基单晶等方面取得一系列重要进展,支撑了融合“电容+电池”储能优点的高能量和高功率储能器件性能实现重大突破。

    针对碳材料表面双电层储能比容量低的问题,近期该研究团队基于早期设计的高比电容的氮掺杂少层碳介孔(Science 2015, 350, 1508),以实现高性能氮掺杂碳的宏量制备与实际应用为导向,提出了“硅原子锚定活性氮”、“硅-硼/铝原子协同调控活性氮类型/含量”、“镁辅助调控孔结构”等材料设计与制备新思路,发明了“溶胶凝胶-热处理”相结合的规模化制备氮掺杂无序介孔少层碳的新方法,所得氮掺杂碳材料导电率达150 S/cm、比电容达690 F/g、30,000 次循环容量保持率达90%。已申请多项国家发明专利201910419557.1、201911029332.1、 201910403912.6、201910408208.X等,相关文章链接:J. Energy Chem., 2020. (DOI.org/10.1016/j.jechem.2020.02.024);ACS Appl. Mater. Interfaces, 2020. (DOI.org/10.1021/acsami.0c02535);Batteries & Supercaps, 2020. (DOI.org/10.1002/batt.202000138)。

    针对常规金属氧化物体相储能难以实现高功率储能的问题,该研究团队运用前期的量子电容概念阐述了介孔/纳孔尺度的表层量子极化电容,结合密度泛函计算态密度分布研究,发现了活性氮掺杂二氧化钛具备质子耦合电子反应的储电新机理。基于前期发明了“低温还原+元素掺杂”制备高导电黑色氧化钛的制备方法(Energy Environ. Sci. 2013, 6, 3007; J. Am. Chem. Soc. 2013, 135, 17831; Chem. Soc. Rev. 2015, 44, 1861;Adv. Energy Mater. 2016, 6, 1600452. Adv. Mater. 2017, 29, 1700136.),发现9.29 at%高浓度掺杂黑色TiO2-x:N比电容高达750 F/g,颠覆了宽禁带半导体二氧化钛无法应用于超级电容器电极的传统认识。相关成果发表在Sci. China Mater. 2020, 63, 1227-1234. (DOI.org/10.1007/s40843-020-1303-4) ,相关成果已获“氧化钛基超级电容器电极材料及其制备方法”等授权发明专利(中国发明专利201410514027.2、国际专利PCT/CN2014/087832、美国发明专利US10192690B2、欧洲发明EP14849668.0、日本发明6550378)并进入法国、西班牙、德国、英国等国家。

    此外,针对锂电负极材料倍率性能差的问题,该研究团队提出可实现“离子+电子”快速迁移的“孔道+单晶”多孔单晶结构设计思想,融合体相和表面高储能且极速充放电的优异特性。该研究基于前期工作中模拟自然界的热液蚀变发明原子尺度微溶蚀法(Gen. Chem. 2018, 4 (1), 170022; J. Am. Chem. Soc. 2018, 140, 5719; Cell Rep. Phy. Sci. 2020, 1, 100026; ACS Appl. Nano Mater. 2020, 3, 3315.),并结合高温低氧分压诱导氧缺陷,成功制备了高比表面积的纳孔单晶黑色Nb2O5-x,储锂比容量253 mAh/g,电容式容量高达87%,具有极高的倍率性能(187 mAh/g@25C@4000次循环、70mAh/g@250C),比容量和倍率特性远优于氧化物性能最佳的“零应变”Li4Ti5O12材料,验证了纳孔单晶结构具有融合体相和表面的高储能且极速充放电的优异特性,已实现宏量制备并应用于超高倍率储能器件中,实现了200C超高倍率储放电和高能量密度139 Wh/kg。相关文章:iScience, 2020, 23, 100767. (DOI. 10.1016/j.isci.2019.100767),该研究申请中国发明专利201810088567.7、201910541802.6、202010023063.4和国际PCT专利国际专利PCT/CN2020/097181。

    上述新型高性能电极研究课题获得国家重点研发计划、科技部重点领域创新团队等项目的资助和支持。相关研究成果《面向高功率储能应用的高性能电极材料的结构设计与性能调控》项目荣获2019年上海市自然科学一等奖。

    硅原子锚定活性氮的设计制备与超高比电容性能

    氮掺杂黑色二氧化钛及其作为超级电容器活性材料的电化学性能

    超高倍率纳孔单晶氧化铌电极材料的设计制备与电化学性能

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=576247
相关报告
  • 《上海硅酸盐所在新型高功率储能电极材料研究方面取得系列进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-07-29
    • 国际激烈竞争的高功率储能装备急需超高效能电源。锂离子电池和超级电容器是储能原理不同、各有特点的两类代表性储能器件。锂电池能量密度高(~250 Wh kg-1),但功率密度偏低(<1 kW kg-1),而超级电容器功率密度高(~15 kW kg-1)但能量密度过低(<20 Wh kg-1)。超越上述两类储能器件的储能极限,发展兼具高能量密度和高功率密度储能器件的新型电极材料,是化学储能领域极具挑战性的世界性难题。中国科学院上海硅酸盐研究所先进材料与新能源应用研究团队近期在高比电容少层介孔碳电极材料的宏量制备方法、极速储放能的高比容量黑色二氧化钛电极材料、超高倍率电容式储能的纳孔氧化铌基单晶等方面取得一系列重要进展,支撑了融合“电容+电池”储能优点的高能量和高功率储能器件性能实现重大突破。 针对碳材料表面双电层储能比容量低的问题,近期该研究团队基于早期设计的高比电容的氮掺杂少层碳介孔(Science 2015, 350, 1508),以实现高性能氮掺杂碳的宏量制备与实际应用为导向,提出了“硅原子锚定活性氮”、“硅-硼/铝原子协同调控活性氮类型/含量”、“镁辅助调控孔结构”等材料设计与制备新思路,发明了“溶胶凝胶-热处理”相结合的规模化制备氮掺杂无序介孔少层碳的新方法,所得氮掺杂碳材料导电率达150 S/cm、比电容达690 F/g、30,000 次循环容量保持率达90%。已申请多项国家发明专利201910419557.1、201911029332.1、 201910403912.6、201910408208.X等,相关文章链接:J. Energy Chem., 2020. (DOI.org/10.1016/j.jechem.2020.02.024);ACS Appl. Mater. Interfaces, 2020. (DOI.org/10.1021/acsami.0c02535);Batteries & Supercaps, 2020. (DOI.org/10.1002/batt.202000138)。 针对常规金属氧化物体相储能难以实现高功率储能的问题,该研究团队运用前期的量子电容概念阐述了介孔/纳孔尺度的表层量子极化电容,结合密度泛函计算态密度分布研究,发现了活性氮掺杂二氧化钛具备质子耦合电子反应的储电新机理。基于前期发明了“低温还原+元素掺杂”制备高导电黑色氧化钛的制备方法(Energy Environ. Sci. 2013, 6, 3007; J. Am. Chem. Soc. 2013, 135, 17831; Chem. Soc. Rev. 2015, 44, 1861;Adv. Energy Mater. 2016, 6, 1600452. Adv. Mater. 2017, 29, 1700136.),发现9.29 at%高浓度掺杂黑色TiO2-x:N比电容高达750 F/g,颠覆了宽禁带半导体二氧化钛无法应用于超级电容器电极的传统认识。相关成果发表在Sci. China Mater. 2020, 63, 1227-1234. (DOI.org/10.1007/s40843-020-1303-4) ,相关成果已获“氧化钛基超级电容器电极材料及其制备方法”等授权发明专利(中国发明专利201410514027.2、国际专利PCT/CN2014/087832、美国发明专利US10192690B2、欧洲发明EP14849668.0、日本发明6550378)并进入法国、西班牙、德国、英国等国家。 此外,针对锂电负极材料倍率性能差的问题,该研究团队提出可实现“离子+电子”快速迁移的“孔道+单晶”多孔单晶结构设计思想,融合体相和表面高储能且极速充放电的优异特性。该研究基于前期工作中模拟自然界的热液蚀变发明原子尺度微溶蚀法(Gen. Chem. 2018, 4 (1), 170022; J. Am. Chem. Soc. 2018, 140, 5719; Cell Rep. Phy. Sci. 2020, 1, 100026; ACS Appl. Nano Mater. 2020, 3, 3315.),并结合高温低氧分压诱导氧缺陷,成功制备了高比表面积的纳孔单晶黑色Nb2O5-x,储锂比容量253 mAh/g,电容式容量高达87%,具有极高的倍率性能(187 mAh/g@25C@4000次循环、70mAh/g@250C),比容量和倍率特性远优于氧化物性能最佳的“零应变”Li4Ti5O12材料,验证了纳孔单晶结构具有融合体相和表面的高储能且极速充放电的优异特性,已实现宏量制备并应用于超高倍率储能器件中,实现了200C超高倍率储放电和高能量密度139 Wh/kg。相关文章:iScience, 2020, 23, 100767. (DOI. 10.1016/j.isci.2019.100767),该研究申请中国发明专利201810088567.7、201910541802.6、202010023063.4和国际PCT专利国际专利PCT/CN2020/097181。 上述新型高性能电极研究课题获得国家重点研发计划、科技部重点领域创新团队等项目的资助和支持。相关研究成果《面向高功率储能应用的高性能电极材料的结构设计与性能调控》项目荣获2019年上海市自然科学一等奖。 硅原子锚定活性氮的设计制备与超高比电容性能 氮掺杂黑色二氧化钛及其作为超级电容器活性材料的电化学性能 超高倍率纳孔单晶氧化铌电极材料的设计制备与电化学性能
  • 《上海硅酸盐所在高储能新型无铅介质陶瓷材料研究方面取得系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-15
    • 随着不可再生能源的不断消耗和环境问题的日益严峻,开发和利用高性能、环保型储能材料成为当前科技和产业界的研究热点。介质储能电容器因其具有功率密度高、充放电速度快、稳定性优异和制造成本低等优势,在汽车电子、通信、航空、航天和尖端技术等领域显示出巨大的应用前景。 近年来,中国科学院上海硅酸盐研究所董显林研究员团队开展了储能电容器用新型无铅介质材料的研究工作,并取得了系列研究成果。该团队以钛酸钡(BaTiO3)为基体,设计并合成了一种新型高性能BaTiO3基弛豫铁电体(BaTiO3-Bi(Zn1/2Sn1/2)O3)储能介质材料。通过在BaTiO3基体中引入Bi(Zn1/2Sn1/2)O3,形成A位、B位离子无序,破坏了铁电长程有序,将铁电畴转化为极性纳米微区。利用极性纳米微区在外加电场下的快速响应,显著提高材料的储能密度和储能效率。该介质材料不仅兼具高储能密度(2.41 J/cm3)和高储能效率(91.6%),而且其储能特性还表现出优异的温度(20~160℃)、频率(1~1000Hz)和疲劳(105次循环)稳定性,可满足X8R电容器的要求。相关研究阐明了储能特性的高稳定性来源于极性纳米微区的“弱耦合弛豫行为”。该工作以Hot Paper的形式发表在Journal of Materials Chemistry C (J. Mater. Chem. C, 2018,6, 8528-8537)上。 小型化和轻量化一直是储能电容器的重要发展趋势。为此,该团队聚焦尚无文献报道的铌酸钠(NaNbO3)体系。NaNbO3的体积密度仅为4.55g/cm3, 相比铁酸铋(8.37g/cm3)、钛酸钡(6.02g/cm3)、钛酸铋钠 (5.977g/cm3)等其它无铅介质材料体系,它在储能电容器的轻量化方面具有明显的优势。然而,电场诱导的亚稳态铁电性和碱金属钠元素挥发导致的耐电强度低制约了NaNbO3在储能方面的应用。该团队先后采用顺电体调控和A位空位策略来增强NaNbO3的储能特性,构筑了两种新型的NaNbO3基储能介质陶瓷材料:NaNbO3-SrTiO3和Na1-3xBixNbO3。这两种NaNbO3基储能介质陶瓷材料均表现出了优异的储能特性、充放电特性及稳定性,其中Na1-3xBixNbO3的综合储能特性(储能密度:4.03J/cm3、储能效率:85.4%、功率密度:62.5 MW/cm3)为目前文献报道的最优值。该工作为NaNbO3材料开辟了新的应用方向,同时也为设计高储能无铅介质材料提供了新的方法和思路。相关研究成果发表在Journal of Materials Chemistry A (J. Mater. Chem. A, 2018,6, 17896-17904)和ACS Sustainable Chemistry & Engineering (ACS Sustainable Chem. Eng. 2018, 6, 10, 12755-12765)上。 以上系列研究工作的论文第一作者是博士研究生周明星,论文共同通讯作者为董显林研究员和梁瑞虹研究员。