《【Energy & Environmental Science】新策略通过抑制氧气释放显著延长锂离子电池寿命》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2024-12-26
  • 一个研究小组开发出了提高下一代锂离子电池(LIBs)正极材料富锂层状氧化物(LLO)材料耐久性的策略。这一突破显著延长了电池寿命,发表在 Energy & Environmental Science 杂志上。

    锂离子电池在电动汽车和储能系统(ESS)等应用中不可或缺。 富锂层状氧化物(LLO)材料通过减少镍和钴的含量,同时增加锂和锰的成分,使能量密度比传统的镍基阴极高出 20%。 作为一种更经济、更可持续的替代材料,LLO 已引起广泛关注。 然而,充放电循环过程中出现的容量衰减和电压衰减等问题阻碍了其商业化的可行性。 虽然之前的研究已经发现循环过程中阴极的结构变化是导致这些问题的原因,但不稳定性背后的确切原因在很大程度上仍不清楚。 此外,旨在增强 LLO 结构稳定性的现有策略也未能从根本上解决问题,从而阻碍了其商业化。 POSTECH 团队重点研究了充放电过程中氧释放在破坏 LLO 结构稳定性方面的关键作用。 他们假设,提高阴极与电解质之间界面的化学稳定性可以防止氧气释放。 基于这一想法,他们通过改进电解质成分来强化阴极-电解质界面,从而显著减少了氧气排放。

    研究小组的增强型电解质在经过 700 次充放电循环后仍能保持 84.3% 的惊人能量保持率,与传统电解质相比有了显著改善,传统电解质在经过 300 次循环后平均只能保持 37.1% 的能量。 研究还发现,LLO 材料表面的结构变化对材料的整体稳定性有重大影响。 通过解决这些变化,研究小组能够显著提高阴极的寿命和性能,同时最大限度地减少电池内部电解质分解等不必要的反应。 Jihyun Hong 教授评论说:"利用同步辐射,我们能够分析阴极颗粒表面和内部的化学和结构差异。 这表明,阴极表面的稳定性对材料的整体结构完整性及其性能至关重要。 我们相信,这项研究将为开发下一代阴极材料提供新的方向。

    原文链接: Gukhyun Lim et al, Decoupling capacity fade and voltage decay of Li-rich Mn-rich cathodes by tailoring surface reconstruction pathways, Energy & Environmental Science (2024). DOI: 10.1039/D4EE02329C


  • 原文来源:https://techxplore.com/news/2024-12-strategy-significantly-lithium-ion-battery.html
相关报告
  • 《实时测量方法延长电池寿命并提高电池安全性》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-08-04
    • 强大且安全的电池是电动汽车成功的关键要素。因此,测量电池的容量和状态至关重要。阻抗谱法是获取更多信息的测量方法。阻抗本身无法直接测量,而是通过电流和电压之间的关系计算得出。阻抗提供有关电池荷电状态 (SoC) 的信息,并有助于推断其健康状况(SoH,即电池内部状况,包括正极、负极和电解质的位置)或其安全状态。 收集所有必要数据需要耗时的测量和分析方法。此外,迄今为止,阻抗测量只能在静止状态下进行。通常需要长达 20 分钟才能获得表征电池所需的数据。 在 Fabio La Mantia 的领导下,弗劳恩霍夫 IFAM 的研究人员进一步开发了这种方法。现在,动态阻抗谱技术首次能够计算电池在运行过程中的状态测量值,并实时提供数据。 通过这种方式获取的信息远不止简单的充电容量或剩余工作时间数据。它能够提供电池内部状态的详细、准确和深入描述。这也能让我们预测单个电池的潜在寿命。 虽然现有的电池充电状态显示器(例如,集成在电动汽车的车载电子设备中)也会在使用过程中持续进行测量,但它们提供的信息较少,响应速度较慢,而且不太准确。 “首先,动态阻抗谱技术为优化电池管理开辟了新的可能性,从而延长电池的使用寿命。它也为这些电池在安全关键型应用领域的应用铺平了道路。”该项目负责人Hermann Pleteit解释道。 高分辨率测量方法和直接分析 在这种创新方法中,放电或充电电流与多频测试信号叠加。不同的频率使得能够推断电池内部某些组件或过程的状态。电流和电压的响应信号每秒测量高达一百万次。所有来自高分辨率测量方法的数据都会流入同时运行的数据处理系统。软件程序利用这些信息计算阻抗值的演变,然后推断相关电池单元的状态。 为了在高分辨率测量产生海量数据的情况下实时获得结果,弗劳恩霍夫的研究人员设计了另一个巧妙的技巧。“我们开发了算法,可以在分析之前显著减少数据量,同时又不丢失相关信息,”Pleteit 说道。与这些进展相一致,通过阻抗谱法实时控制电池状态的各个方面具有显著的优势。 快速关闭过热的电池 例如,电池管理系统可以利用阻抗数据,在行驶过程中立即记录某个电池单元局部过热的情况。然后,系统会直接关闭该电池单元或降低功率。这消除了对传统温度传感器的需求,因为这些传感器通常放置在电池单元外部,因此会延迟记录热问题。到那时,通常为时已晚,无法防止电池单元受损。 电动汽车充电器也有一些优势。例如,这项技术可以用来决定是选择超快速充电还是较慢但能减少电池磨损的充电方式。在休息站的短暂停留期间,电池管理系统会快速为电池充电,同时确保不会出现危险的温度峰值,并且内部组件不会承受过度压力。如果车辆插入充电器几个小时,管理系统会以较慢的速度为电池充电,以减少磨损并延长电池使用寿命。 可再生能源和航空应用 风能或光伏等可再生能源的供应商需要通过储能来补偿电力生产的波动,而借助弗劳恩霍夫技术,他们可以获得稳定的电池模块系统,并可随时进行控制。 实时监控电池状态甚至有望在未来安全关键场景中实现应用。“例如,这类系统可以用于环保型电动飞机。这个市场目前尚处于起步阶段。航运业也对这项技术表现出了浓厚的兴趣,”Pleteit 说道。 阻抗谱法不仅适用于目前常见的锂离子电池,还可以应用于固态电池、钠离子电池、锂硫电池,或任何其他未来技术。
  • 《【 Energy Materials and Devices 】稳定锂离子电池: 钒的作用》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-11-11
    • 随着电动汽车和储能系统的需求激增,锂离子电池需要以更低的成本提供更高的能量密度。 虽然磷酸铁锂和镍-钴-锰-氧化锂等传统正极材料被广泛使用,但它们往往无法兼顾性能和经济性。 富锂锰氧化物(LRMOs)因其高容量和无钴成分而成为一种潜在的替代品。 然而,它们的初始库仑效率低和电压衰减快,限制了它们的广泛应用。 要解决这些难题,就必须进行更深入的研究,以稳定锂离子金属氧化物电池,从而实现广泛的商业应用。 2024 年 9 月,广东工业大学罗东和刘晨宇领导的研究团队在 Energy Materials and Devices 杂志上发表了一项研究,标志着锂离子电池技术取得了重大进展。 他们的研究证明了用 NH4VO3 处理富锂阴极材料如何产生掺钒尖晶石层状结构,从而提高初始库仑效率和电压稳定性。 这项简单而有效的改性是朝着提高高能锂离子电池的可持续性和性能迈出的重要一步。 该研究解决了 LRMO 阴极长期存在的两个问题:初始库仑效率(ICE)低和电压衰减快。 研究团队采用 NH4VO3 进行水热处理,将钒引入阴极表面,形成掺钒尖晶石层状结构。 这种创新结构改善了锂离子扩散,减少了表面界面反应,从而稳定了氧氧化还原过程。 值得注意的是,ICE 从 74.4% 跃升至 91.6%,超过了商业化所需的临界值。 除了效率的显著提高,阴极还表现出了令人印象深刻的电压稳定性,在 200 个周期内,每个周期的电压衰减仅为 0.47 mV。 这种改进与抑制不可逆氧释放和形成强 V-O 键有关,它们加强了材料的结构稳定性。 通过解决这些关键挑战,该研究强调了一种有希望提高 LRMO 阴极性能和寿命的方法,使它们更适合高能应用。 研究成果为解决富锂阴极库仑效率低和电压衰减的长期难题提供了一种实用、高效的方法。 通过掺入钒,显著提高了氧化还原稳定性和电压性能,为下一代锂离子电池铺平了道路,以满足电动汽车和可再生能源存储等领域日益增长的能源需求。掺钒的富锂阴极在电动汽车、可再生能源系统和消费电子产品等对电池效率和寿命要求极高的应用领域具有巨大潜力。 效率和稳定性的提高不仅有望通过消除钴来降低成本,还能增强电池的整体性能。 随着这项技术的推广,它将带来更经济、更可持续的能源解决方案,加速全球向更清洁、更高效的能源转变。 原文链接:: Liping Tan et al, V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency, Energy Materials and Devices (2024). DOI: 10.26599/EMD.2024.9370039