《【 Energy Materials and Devices 】稳定锂离子电池: 钒的作用》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2024-11-11
  • 随着电动汽车和储能系统的需求激增,锂离子电池需要以更低的成本提供更高的能量密度。 虽然磷酸铁锂和镍-钴-锰-氧化锂等传统正极材料被广泛使用,但它们往往无法兼顾性能和经济性。

    富锂锰氧化物(LRMOs)因其高容量和无钴成分而成为一种潜在的替代品。 然而,它们的初始库仑效率低和电压衰减快,限制了它们的广泛应用。 要解决这些难题,就必须进行更深入的研究,以稳定锂离子金属氧化物电池,从而实现广泛的商业应用。 2024 年 9 月,广东工业大学罗东和刘晨宇领导的研究团队在 Energy Materials and Devices 杂志上发表了一项研究,标志着锂离子电池技术取得了重大进展。

    他们的研究证明了用 NH4VO3 处理富锂阴极材料如何产生掺钒尖晶石层状结构,从而提高初始库仑效率和电压稳定性。 这项简单而有效的改性是朝着提高高能锂离子电池的可持续性和性能迈出的重要一步。 该研究解决了 LRMO 阴极长期存在的两个问题:初始库仑效率(ICE)低和电压衰减快。 研究团队采用 NH4VO3 进行水热处理,将钒引入阴极表面,形成掺钒尖晶石层状结构。 这种创新结构改善了锂离子扩散,减少了表面界面反应,从而稳定了氧氧化还原过程。 值得注意的是,ICE 从 74.4% 跃升至 91.6%,超过了商业化所需的临界值。 除了效率的显著提高,阴极还表现出了令人印象深刻的电压稳定性,在 200 个周期内,每个周期的电压衰减仅为 0.47 mV。 这种改进与抑制不可逆氧释放和形成强 V-O 键有关,它们加强了材料的结构稳定性。 通过解决这些关键挑战,该研究强调了一种有希望提高 LRMO 阴极性能和寿命的方法,使它们更适合高能应用。

    研究成果为解决富锂阴极库仑效率低和电压衰减的长期难题提供了一种实用、高效的方法。 通过掺入钒,显著提高了氧化还原稳定性和电压性能,为下一代锂离子电池铺平了道路,以满足电动汽车和可再生能源存储等领域日益增长的能源需求。掺钒的富锂阴极在电动汽车、可再生能源系统和消费电子产品等对电池效率和寿命要求极高的应用领域具有巨大潜力。 效率和稳定性的提高不仅有望通过消除钴来降低成本,还能增强电池的整体性能。 随着这项技术的推广,它将带来更经济、更可持续的能源解决方案,加速全球向更清洁、更高效的能源转变。

    原文链接:: Liping Tan et al, V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency, Energy Materials and Devices (2024). DOI: 10.26599/EMD.2024.9370039


  • 原文来源:https://techxplore.com/news/2024-11-stabilizing-lithium-ion-batteries-vanadium.html?deviceType=mobile
相关报告
  • 《锂离子电池:储能电池中的明珠》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-30
    • 日前,瑞典皇家科学院将诺贝尔化学奖授予对锂离子电池发展作出突出贡献的3位科学家。其中,惠廷厄姆采用硫化钛作为正极材料,金属锂作为负极材料,制成世界上第一块锂离子电池。古迪纳夫经过反复实验与验证,发现钴酸锂比硫化钛更适合储存锂离子,进而显著提高电池的电压平台。吉野彰在此基础上,采用锂离子代替纯锂,提升了电池的使用安全性,从而使锂离子电池具备实际应用条件。 之所以被称为锂离子电池,是因为无论在电池正负极还是在电解质中,锂都是以离子形式存在。与其他储能电池相比,其突出优点在于单位体积的储存能量高,没有记忆效应,充电前不必顾及电池的用电深度,同时,能量转换率高、自放电率低、使用寿命长等。随着日本索尼公司生产的锂离子电池于1991年投入市场,锂离子电池迅速实现大范围应用,是目前便携式电子设备、新能源汽车、智能电网等的主流储能形式。 由于特有的技术优势,锂离子电池目前广泛应用于军事领域,成为军事作战中不可或缺的能量来源。 军事基地储能。高原、边防、海岛部队距后方基地远,能源补给线长,开发利用风能、太阳能等可再生能源成为必然趋势。采用锂离子电池储能,不仅可解决可再生能源发电间歇性和稳定性差等问题,还具备削峰填谷等功能,是解决偏远军事基地能源保障的关键技术。但目前锂离子电池在大规模储能应用方面存在安全性较差的问题,遭到火力打击时,容易冒烟、起火,甚至引起爆炸。 野战供电。采用锂离子电池的方舱式储能系统没有柴油发电机噪声大、红外特征明显等问题,显著增强了电能保障的隐蔽性和生存能力。但针对野战供电环境,锂离子电池存在低温性能差等问题,如在-40℃条件下,电池的充放电容量不足室温条件下的一半。 高能武器电源。电磁炮、激光、高功率微波等新型高能武器装备运用越来越广泛,定向能武器输出功率越来越大。锂离子电池以优异的倍率充放电能力可用于高能武器的电源。不过,随着高能武器小型化的发展趋势,现有锂离子电池的体积功率密度仍需进一步提高,以满足车载和机载武器小型化、轻量化要求。 无人装备动力源。目前主流的小型和微型无人装备均采用锂离子电池作为其主要电源。但以锂离子电池为动力源的无人机,续航时间通常在半小时左右,是制约军用无人装备实战化应用的最大问题。 单兵电源。随着单兵装备信息化、可视化以及智能化趋势加快,对电能的需求急速增加。锂离子电池是目前各国单兵装备的主力电源。不过,随着单兵和班组作战信息化程度不断提高,士兵在执行任务过程中,不得不携带更多电池。目前高能量密度的电源是制约未来士兵连续作战的瓶颈技术。 因此,未来锂离子电池的研究将集中在以下几个方向。 一是高能量密度。随着能量密度不断提高,相同体积或重量条件下电池所蕴含的能量更大,可全面提升无人机、水下潜航器、单兵装备等的续航时间与续航里程。二是高安全性。通过采用固态电解质代替传统可燃有机电解液,锂离子电池具有更高安全性,在遭受炮火打击后不会引起二次爆炸,满足大型军事基地、储能方舱等对大容量、高安全储能的需求。三是高环境适应性。提升低温条件下锂离子在电极材料中的扩散能力以及电解液的电导率,使电池能够在严寒条件下正常充放电,从而有效增强野战电站和武器装备等的全域作战能力。四是高功率密度。通过开展相关研究,使锂离子电池的快速充放电性能不断提高,从而满足新型武器能量瞬时释放的脉冲功率需求。 能源是现代战争的物质基础和动力源泉,从大型军事基地到单兵班组,从空天飞行器到水下装备,锂离子电池发挥着非常重要的作用。随着关键技术的不断突破,锂离子电池在军事领域将有更广泛的应用前景。
  • 《新材料让锂离子电池容量大幅提升》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-01
    • 美国西北大学研究团队研发出一种全新材料,可用于制造性能稳定的大容量锂离子电池,从而大幅提升智能手机、电动汽车等的续航时间,甚至可以延长到目前的两倍多。 锂离子电池已是现代高性能电池的代表,应用最为广泛,其主要依靠锂离子在正极和负极之间移动来工作。而今消费电子和动力电池对能量密度提升的需求,推动着正极材料不断进步——通常,人们采用的是锂、氧和一种过渡金属的化合物为电池正极,这其中,正是过渡金属负责储存和释放电能,其性质也是电池容量的关键。 现阶段最常用的过渡金属是钴,而此前科学家研究发现,如果用镁取代钴,可以在提高容量的同时降低成本,但镁也有一定缺陷——电池性能退化太快,仅两轮充放电后就出现大幅下降。 据美国西北大学官方网站介绍,此次团队研发的新材料是掺有铬和钒元素的锂镁氧化物,其用作锂离子电池的正极,电池容量出现了大幅提高,同时兼具性能稳定、不会迅速退化的优点。 西北大学研究小组先是为锂镁氧化物材料建立了一个结构模型。该模型详细到了单个原子,团队借此分析了全部充放电过程,发现其中的氧也会参与存储电能,因而容量比以往要大。 随后,研究人员尝试了将不同元素掺入锂镁氧化物的方案,以期计算出不同混合物各自的储能效果。最终他们发现,掺入铬和钒能在保持电池大容量的同时实现最稳定性能。 研究人员表示,下一步他们将在实验室中检验该新材料的实际应用表现。