《美国研究人员开发出最高分辨率单光子超导相机》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-10-28
  • 据美国国家标准与技术研究院网站10月25日消息,美国国家标准与技术研究院(NIST)的研究人员开发出最高分辨率单光子超导相机,该相机包含400000像素,是其他同类设备的400倍。超导相机是由超导纳米线网格组成的阵列,可用于捕获来自太空中遥远天体或人脑某些部分的非常微弱的光信号。当环境温度接近绝对零度时,阵列纳米线中的电流毫无阻力地移动,直到受到光子撞击产生电信号。研究人员向该阵列施加了略低于最大值的电流,即使单个光子撞击一个像素也会破坏超导性,导致电流被分流到连接每个像素的小型电阻加热元件中并产生可快速检测的电信号,再结合所有光子的位置和强度信号可形成图像。该阵列的面积为4mm×2.5mm,分辨率为5μm×5μm,在370nm和635nm波长下达到单位量子效率,以每秒1.1×105的计数速率进行计数,并且具有暗色域。研究人员计划进一步提高原型相机的灵敏度,大幅提高其像素数量,可将该相机用于对太阳系外微弱星系或行星进行成像、在基于光子的量子计算机中测量光以及利用近红外光观察人体组织的生物医学研究等低光工作场景。相关研究成果发表在《自然》期刊上。


    来自全球技术地图

  • 原文来源:https://www.nist.gov/news-events/news/2023/10/nist-team-develops-highest-resolution-single-photon-superconducting-camera
相关报告
  • 《科学家开发最高分辨率单光子超导相机》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-10-26
    • NIST的研究人员和他们的同事们已经制造出了一台超导相机,其像素高达40万,是其他同类设备的400倍。 超导相机使科学家能够捕捉到非常微弱的光信号,无论是来自遥远的太空物体还是人类大脑的某些部分。拥有更多的像素可以在科学和生物医学研究中开辟许多新的应用。研究人员在Nature上发表了他们的研究成果。 NIST的相机由超薄电线网格组成,冷却到接近绝对零度,电流在其中无阻力移动,直到电线被光子击中。在这些超导纳米线相机中,即使是单个光子传递的能量也可以被检测到,因为它会在网格上的特定位置(像素)关闭超导性。把所有光子的位置和强度结合起来,就形成了一幅图像。 第一台能够探测单光子的超导照相机是在20多年前研制出来的。从那以后,这些设备的像素都不超过几千像素——对大多数应用来说太有限了。 制造一个具有更高像素的超导相机是一个严峻的挑战,因为它几乎不可能将成千上万个冷冻像素中的每一个都连接到它自己的读出线上。这一挑战源于这样一个事实,即相机的每个超导组件都必须冷却到超低温才能正常工作,而将数百万像素中的每个像素单独连接到冷却系统几乎是不可能的。 NIST的研究人员Adam McCaughan和Bakhrom Oripov以及他们在NASA喷气推进实验室和the University of Colorado Boulder的合作者克服了这一障碍,他们将来自许多像素的信号组合到几根室温读出线上。 任何超导导线的一个普遍特性是,它允许电流自由流动,直到某个最大“临界”电流。为了利用这种行为,研究人员对传感器施加了略低于最大电流的电流。在这种情况下,即使一个光子击中一个像素,也会破坏超导性。电流不再能够无阻力地通过纳米线,而是分流到连接到每个像素的小电阻加热元件。分流的电流产生了一个可以快速检测到的电信号。 借鉴现有的技术,NIST的团队构建了相机,使超导纳米线的交叉阵列形成多行和多列,就像在井字游戏中一样。每个像素——以垂直和水平纳米线相交的点为中心的一个小区域——由它所在的行和列唯一地定义。 这种安排使研究小组能够一次测量来自整行或整列像素的信号,而不是记录每个像素的数据,从而大大减少了读出线的数量。为此,研究人员将一根超导读出线与像素行平行但不接触,另一根线与像素行平行但不接触。 只考虑与这些行平行的超导读出线。当光子击中一个像素时,分流到电阻加热元件的电流加热读出线的一小部分,形成一个微小的热点。热点,反过来,产生两个沿读出线方向相反的电压脉冲,由两端的探测器记录。脉冲到达末端探测器所需的时间差揭示了像素所在的列。另一根超导读出线与柱子平行,起到类似的作用。 探测器可以识别短至50万亿分之一秒的信号到达时间的差异。他们还可以计算出每秒多达10万个光子撞击电网。 一旦团队采用了新的读出架构,Oripov在增加像素数量方面取得了快速进展。在几周内,这个数字从2万像素跃升到40万像素。McCaughan说,读出技术可以很容易地扩展到更大的相机上,并且具有数千万或数亿像素的超导单光子相机很快就可以使用。 在接下来的一年里,研究小组计划提高原型相机的灵敏度,这样它就可以捕捉到几乎所有入射的光子。这将使相机能够处理诸如成像太阳系以外的微弱星系或行星等低光工作,在基于光子的量子计算机中测量光线,并为使用近红外光观察人体组织的生物医学研究做出贡献。
  • 《前沿 | 加州大学开发出新型高分辨率激光雷达芯片》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-03-11
    • 自动驾驶应用中,激光雷达(LiDAR)成本一直非常高昂,但这一状况可能将发生改变。据外媒报道,加州大学伯克利分校(University of California, Berkeley)电气工程和计算机科学教授、伯克利传感器和执行器中心联合主任Ming Wu开发出一种新型高分辨率激光雷达芯片。 该激光雷达基于焦平面开关阵列(FPSA)打造,其中FPSA阵列是一种基于半导体的天线矩阵,可以像数码相机中的传感器一样收集光线。Wu表示该激光雷达的分辨率为16,384像素,虽与智能手机摄像头的数百万像素相比微不足道,但也是目前FPSA(最高像素为512)上的最高像素了。 Wu还称该设计使用与生产计算机处理器相同的互补金属氧化物半导体(CMOS)技术,可扩展到百万像素尺寸,因此或可用于自动驾驶汽车、无人机、机器人甚至智能手机,实现新一代功能强大、成本低廉的3-D传感器。 激光雷达的工作原理是捕捉激光器发出的光的反射。通过测量光返回所需的时间或光束频率的变化,激光雷达可以绘制环境图并记录周围物体移动的速度。 机械激光雷达系统具有强大的激光,即使在黑暗中也能可视化数百码外的物体。 这些系统还可生成分辨率足够高的3-D地图,使车辆的人工智能能够识别车辆、自行车、行人和其他危险。 然而十多年来,研究人员一直无法在芯片上实现这些功能,其中最大的障碍是激光。Wu表示:“我们试图扩大照明区域,但如果这么做,光线就会变弱,以致缩短距离。因此,为了保证光的强度,我们减少了激光照亮区域。” 而此时就需要用到FPSA。该阵列由一个微型光发射器或天线矩阵以及快速打开和关闭它们的开关组成,可以一次通过单个天线引导所有可用的激光功率。 然而切换也会带来问题。几乎所有基于硅的LiDAR系统都使用热光开关,依赖温度的巨大变化来产生折射率的微小变化,并将激光从一个波导弯曲和重定向到另一个。 但热光开关体型较大且耗电,在芯片上集成过多会产生过多热量而使得芯片无法正常运行。因此现有的FPSA被限制在512像素或更低。 Wu的解决方案使用微机电系统(MEMS)开关代替热光开关,从而可将波导从一个位置物理移动到另一个位置。Wu表示:“其结构与高速公路交换非常相似。想象你是一束从东到西的光束。我们可以机械地降低一个坡道,让你突然转90度,让你从北转向南。” MEMS交换机是一种用于路由通信网络中的光的常用技术。但这是该技术首次被应用于LIDAR。与热视光开关相比,MEMS交换机体积较小、功耗低、开关快,且光损失非常低。 因此Wu可以在1平方厘米的芯片上嵌入16,384个像素。当开关打开像素时,它会发射激光束并捕获反射光。每个像素相当于阵列70度视野的0.6度。通过在阵列中快速循环,Wu的FPSA构建了周围世界的3D图片。将其中的几个安装成圆形配置可产生围绕车辆的360度视图。