《苏州纳米所崔义团队:金属型W/WO2固体酸催化剂促进碱性电解水制氢》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-09-07
  •   氢气作为一种高热焓、零碳排放的能源,在未来绿色能源社会中扮演着重要的角色。通过电解水的形式将太阳能、水能、风能等可持续能源以电能的形式转化成化学能储存在氢气中是一条非常经济且绿色的产氢途径。碱水电解产氢可以避免酸腐蚀电极和催化剂的腐蚀溶解,达到高效制备纯氢的目的,同时也能与其它工业半反应(氯碱化工)联用,显示出更广泛的应用前景。相比于酸性环境中质子直接耦合电子的析氢反应(2H+ + 2e-→H2↑),碱性介质中质子的缺乏需要通过额外的水电离补充(H2O + e- → H* + OH-),这直接导致其电解水析氢活性比酸性环境低2~3个数量级,极大地阻碍了碱水电解析氢反应的规模化应用。

      由于可调的化学和电子结构,过渡金属氧化物是碱水电解析氢的潜在优质催化剂。特别是后元素周期表的钨/钼基氧化物催化剂,由于其比前过渡周期常用的3d磁性金属Fe, Co, Ni等元素具有更宽的价态调控区间(0~+6),使得其在电催化应用中具有更强的化学和电子结构调控能力。针对碱水电解缺质子的关键科学问题,后元素周期表的钨/钼氧化物可以通过形成常见的弱酸中间体(钨酸/钨青铜HxWOy,钼酸/钼青铜HxMoOy)来调控催化剂表层的酸度,进而创造一种类酸性环境促进表层析氢反应的发生,而传统的3d磁性金属仅能形成诸如Fe(OH)2, Co(OH)2, Ni(OH)2类的碱性氢氧化物,显然,钨/钼氧化物在碱性电解液中构建类酸催化界面层的优势是其它金属氧化物所不具备的,这也是我们设计固体酸催化剂应用于碱性电解水析氢反应的初衷。

      在本工作中,研究者通过合理的热处理条件,在泡沫镍基底上设计出W/WO2金属型异质结材料,其中WO2作为一类比较特殊的氧化钨物种,兼具金属和氧化物的特性,其丰富的氧缺陷环境和金属特性,使得W/WO2催化剂表层类酸界面更容易形成(WO2 + H2O + e- → HxWOy + OH-),同时金属特性以及阴极保护的特点导致水电离和溶液中的OH-对氧化钨本体的腐蚀减弱(WOx + OH- → WO42- + H2O),更加有利于W/WO2固体酸长效稳定地催化碱水电解制氢反应。

      碱性环境中捕捉W/WO2异质结催化剂表层HxWOy中间产物,成为鉴定催化剂表层类酸催化界面构建成功的关键。崔义研究员团队充分发挥苏州纳米所真空互联实验装置(Nano-X)在能源催化方向的表征优势,进行了如下工作:首先,针对WO2与H2O分子反应形成钨青铜HxWOy这一过程,研究者通过近常压X-射线光电子能谱(NAP-XPS)的通水测试(0.1 mbar)(图1a),发现W/WO2异质结材料具有优异的解水能力,主要特征是代表氧缺陷的O 1s XPS特征峰在通水后消失,而W-OH和H2O吸附峰出现(图1b和c),充分说明了W/WO2表层吸附水和解离水的能力;其次,W/WO2异质结材料经过碱水电解产氢反应后,研究者通过二次离子飞行质谱(TOF-SIMS)成功捕捉到催化剂表层产生大量的水合氢离子(H3O+),这充分说明催化剂表面已经酸化(图1 d, e, f);最后,通过反射电子能量损失谱(REELS)证实了W/WO2表面氢元素的浓度是与施加电位相关的,施加低于30 mV的超低过电位即可导致催化剂表层酸化程度趋向商业钨酸材料(H2WO4)(图1g)。因此,结合Nano-X相关谱学表征,研究者成功获得W/WO2异质结材料在碱水电解析氢过程中表层酸化的证据。

      同时,为了进一步确认酸化中间产物的化学特性,结合热催化过程常见的谱学表征,研究者利用氢固体核磁(1H MAS NMR, 图1h)和吡啶红外(Py-IR, 图1i)分别证实了W/WO2中氢的化学环境趋向商业H2WO4,同时Py-IR表征则证实了W/WO2表层形成的HxWOy酸化物种具有布朗斯特酸特性,即质子的吸附和脱附特性,说明构建的W/WO2异质结材料本质上是一类固体酸材料。

      该研究工作为廉价钨钼基氧化物材料高效稳定地催化碱水电解制氢提供了一种全新研究思路。相关工作以Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte为题发表于期刊Nature Communications,论文的共同第一作者是中国科学院苏州纳米所i-lab/Nano-X博士后陈志刚(已入职重庆理工大学)、徐州工程学院巩文斌博士和上海同步辐射光源王娟助理研究员,通讯作者为中国科学院苏州纳米所崔义研究员。上述研究工作得到了国家自然科学基金面上项目、青年项目、中国科学院青年科学家项目、中国科学院青年交叉团队、江苏省博士后基金和Nano-X平台的支持。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202309/t20230906_6873687.html;https://www.nature.com/articles/s41467-023-41097-w
相关报告
  • 《苏州纳米所NANO-X在热迁移构建W-W双位点促进碱性电催化析氢方面取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-10
    • 过渡金属碳化物由于碳原子嵌入钨晶格中导致其费米面附近的态密度具有类贵金属铂的电子结构,因此被理论预测在电催化析氢反应(HER)中具有类铂的催化属性。与传统的酸性HER相比,在具有大规模产氢潜力的碱性环境中,碳化钨材料的析氢性能并没有如理论预测一样,其中的一个重要原因就是金属钨的d轨道电子填充数在半填充以下,缺电子而富空轨道,这虽然非常有利于碱性HER反应底物H2O分子的吸附和解离,但是解离出的H*和OH*中间物种的脱附却异常困难。其中氢的脱附困难,导致较差的HER活性,而W-OH*的强吸附作用则会导致W位点的深度氧化形成惰性的WxOy物种,这类典型的酸性氧化钨物种在碱性环境极易刻蚀溶解,伴随而来的是活性位点的坍塌和催化活性的衰减。因此,探寻具有类铂电子结构的碳化钨催化剂,且同时具备高效的解离水和脱氢催化活性,成为未来碳化钨基碱性HER催化剂设计的关键。   经过近十年的快速发展,单原子材料在均相、非均相体系中取得了远高于常规体相材料的催化活性。近来,以单原子材料作为母材,通过外界的热、光、电等因素的刺激诱导,可以合成出比母材更高催化活性的原子团簇材料。究其原因,主要是介于单原子和纳米晶之间的亚纳米团簇材料活性位点之间的空间几何距离更近、位点之间直接以金属键键合、金属键/非金属键均处于不饱和配位状态,这些优势使得原子团簇材料理论上在小分子(HER, OER, ORR, NRR, CO2RR等等)催化反应中底物的吸附、活化和产物吸/脱附上具有更佳的活性。但是,目前报道的单原子母材反向合成原子团簇材料的工作,仅仅停留在在管式炉中定温度的碎片式制备,从单原子到纳米晶演变过程电子结构的细微变化,目前仍然难以捕捉和解析,这使得原子团簇的可控合成难度非常大。纳米真空互联实验站(Nano-X)的近常压X-射线光电子能谱(NAP-XPS)可以在不同温度、气氛条件下模拟管式炉的合成条件,直接在变温条件下记录目标元素的光电子能谱。   近期,中国科学院苏州纳米所Nano-X崔义研究员联合先进材料部赵志刚研究员团队基于前期对钨单原子材料制备(Nano Energy 2019, 60, 394–403)和钨电催化析氢反应(Nano Energy 2020, 68, 104335)的研究,进一步地,以单原子钨作为母材,基于热迁移团聚策略,依托苏州纳米所Nano-X的NAP-XPS表征设备,原位揭示了单原子-钨原子团簇-碳化钨纳米晶生长过程电子结构的演变机制,基于NAP-XPS与手套箱电化学工作站真空互联的优势,准原位解析了钨原子团簇的碱性HER催化机制。合成和催化机制的原位/准原位解析有助于加速类铂、高活性碱性HER钨团簇催化剂的开发。  该研究工作为亚纳米级原子团簇材料的可控合成和相关电催化机制的解析提供了一种全新研究思路。相关工作以Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction为题发表于国际知名期刊Nature Communications,本文的共同第一作者是中国科学院苏州纳米所Nano-X博士后陈志刚和苏州大学功能纳米与软物质研究院博士研究生许雅枫,通讯作者为中国科学院苏州纳米所研究员崔义和赵志刚。同时,基于上述工作的原位表征基础,崔义研究员团队在W-Ni双金属合金碱性电催化析氢反应上也取得了初步进展,相关工作以Tungsten-nickel alloy boosts alkaline hydrogen evolution reaction为题发表于The Journal of Physical Chemistry C,相关论文的共同第一作者是中国科学院苏州纳米所Nano-X硕士研究生杨娜娜和博士后陈志刚,通讯作者为中国科学院苏州纳米所研究员崔义和博士后陈志刚。上述研究工作得到了国家自然科学基金面上项目、国家自然科学青年基金、中国科学院青年科学家项目、中国科学院青年交叉团队、江苏省博士后基金和Nano-X的大力支持。   相关文章链接:   https://www.nature.com/articles/s41467-022-28413-6
  • 《吕坚院士团队最新成果:图灵催化剂-开启高性能纳米催化剂设计新风向》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 重量能量密度大且清洁的氢气燃料在能源可持续性和减缓全球变暖相关的环保技术革命中起着至关重要的作用。然而,目前约95% 的氢气产量主要通过化石燃料的蒸汽重整供应,过程中会伴随大量的二氧化碳排放。净零碳排放的电解水制氢是最为清洁的一种氢气生产工艺,但其大规模应用受到低效率和高成本(4-11美元/kg)的限制。根据美国能源部的路线图, 到2031年需实现1公斤绿氢的生产成本低于1美元的目标。近年, 随着我国风能与太阳能产能的大幅发展, 由于诸多原因未能上网的弃电数以千亿度记, 利用过剩电力制氢为降低绿氢成本带了新的机遇。阴离子交换膜电解槽制氢是促使达成价格目标的技术路线之一, 而催化剂的效率及稳定性问题一直是该技术的瓶颈。 具有可控缺陷或应变修饰的低维纳米材料是一类用于制备绿氢的高效电催化剂;然而,由于材料自发的结构退化和应变弛豫,稳定性不足导致性能衰退仍然是一个亟待解决的关键问题。本文提出了一种图灵结构化策略,通过引入高密度纳米孪晶来激活和稳定超薄金属纳米片。图灵结构是通过纳米晶粒的约束取向粘附而形成的,它形成了内在稳定的纳米孪晶网络并同时产生了晶格应变效应。将拥有图灵结构的PtNiNb纳米片催化剂应用于析氢反应,孪晶构型和应变效应协同降低了水分解的反应能垒,并优化了反应过程中的氢吸附自由能。与商用 20% Pt/C 相比,图灵PtNiNb纳米催化剂的质量活性和稳定性指数分别提高了 23.5 倍和 3.1 倍。负载图灵PtNiNb催化剂的阴离子交换膜膜电极电解槽(铂载量仅为 0.05 mg cm-2)在工业化条件10000 A m-2 的电流密度下能稳定运行 500 小时以上,展现了卓越的催化稳定性和工业应用的潜力。此外,这一新范式还可扩展到基于 Ir/Pd/Ag 的纳米催化剂体系,从而证明图灵型催化剂的普适性。 【简介】 高活性和高稳定性是电化学催化剂追求的两大关键要素。合成高活性催化剂的有效策略之一是通过引入应变或晶体缺陷来活化低维纳米材料。晶格应变可以通过改变 d 带中心和带宽来优化表面电子结构,从而调整催化剂表面的反应中间体吸附能,提高催化活性。金属催化剂表面的原子构型是决定催化剂性能的另一个关键因素,尤其是晶体缺陷(如孪晶和层错)的表面构型,由于特定的配位结构和缺陷引起了晶格应变,这些表面构型通常是催化反应的活性位点。然而,应变/缺陷驱动的低维纳米催化剂的高表面能和热力学不稳定性往往会诱发应变弛豫、自发表面重构和向无孪晶的Wulff结构转化,从而导致自身结构退化和催化稳定性恶化,难以实现长期稳定催化的目标。这些局限性对低维纳米催化剂的活性和稳定性的设计策略提出新的需求。 低维纳米材料的构建主要集中在以实现功能为目的的结构控制上,很少考虑利用时空控制进行材料调控。图灵图案(图灵斑图)被称为时空静止图案,普遍存在于远离平衡状态的生物和化学系统中,如Dania rero条纹、贝壳上规则的彩色花样以及微乳液中的六边形阵列。这些图案的形成与艾伦·麦席森·图灵(A.M. Turing)提出的反应-扩散理论有关。在图灵理论中,扩散系数较小的激活因子会诱导局部优先生长,从而形成图灵图案。图灵图案常见的可视化形状是六角形排列的圆柱体、斑点样和迷宫图样。这些图灵图案是原始均质系统中自发的对称性破缺部分。在纳米级图灵图案中出现的这种拓扑特征可能是通过纳米晶粒的各向异性生长实现的。这种破缺的晶格对称性对特定构型(如孪晶和具有内在破缺对称性的二维材料)的生长具有重要的晶体学意义。受晶体对称性和形态发生学(morphogenesis)之间相关性的启发,图灵结构可提供一种新的结构模式,用于设计具有应变和缺陷修饰的低维材料。图灵图案中的两个反相和丰富的相边界对于界面主导的应用,尤其是电催化应用具有极大的结构优势。因此,探索图灵理论在纳米催化剂生长中的应用及其与晶体缺陷的关系具有重要的科学意义。 研究团队通过简易的物理气相沉积技术制备得到铂镍铌(PtNiNb)超薄纳米片,这种纳米片呈现出超纳米尺寸(< 10 nm)的图灵结构,可以作为一种高效的电催化剂应用于析氢反应(HER)。图灵条纹是由具有不同取向的纳米晶粒相互约束形成的,在形成过程中的取向粘附导致了高密度的纳米孪晶和较大的晶格应变。图灵结构使得图灵PtNiNb纳米片在碱性析氢反应中具有超长稳定性和较高的质量活性,这些性能指标比商用Pt/C催化剂提高了一个数量级以上。密度泛函理论(DFT)计算证明了孪晶边界和应变的协同效应加速了水分子解离并优化了电子结构和氢吸附自由能。 相关研究成果以题为“Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction”发表在顶尖期刊《Nature Communications》上。通讯作者为吕坚院士(香港城市大学)。谷佳伦博士和李兰西博士生为论文共同第一作者。其他作者包括:陈博教授,田夫波教授,谢友能博士生,王艳菊博士,钟景博士生,沈君达博士生。 迄今为止,图灵图案主要在软有机物中观察到。这项研究证明图灵结构可以在纳米级的低维固体材料中生成,并与晶体缺陷工程和应变效应耦合。由于高密度纳米孪晶和显著的晶格应变协效应,图灵二维纳米片具有高电催化活性和稳定性。这可用于指导开发其他电催化材料,推进可再生能源的可持续发展。因此,图灵结构代表了高性能低维纳米催化剂设计的新范例,展示了缺陷调制和应变效应的协同优化可以提高此类材料的稳定性和催化活性。 文献信息:https://www.nature.com/articles/s41467-023-40972-w