《苏州纳米所NANO-X在热迁移构建W-W双位点促进碱性电催化析氢方面取得进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-05-10
  • 过渡金属碳化物由于碳原子嵌入钨晶格中导致其费米面附近的态密度具有类贵金属铂的电子结构,因此被理论预测在电催化析氢反应(HER)中具有类铂的催化属性。与传统的酸性HER相比,在具有大规模产氢潜力的碱性环境中,碳化钨材料的析氢性能并没有如理论预测一样,其中的一个重要原因就是金属钨的d轨道电子填充数在半填充以下,缺电子而富空轨道,这虽然非常有利于碱性HER反应底物H2O分子的吸附和解离,但是解离出的H*和OH*中间物种的脱附却异常困难。其中氢的脱附困难,导致较差的HER活性,而W-OH*的强吸附作用则会导致W位点的深度氧化形成惰性的WxOy物种,这类典型的酸性氧化钨物种在碱性环境极易刻蚀溶解,伴随而来的是活性位点的坍塌和催化活性的衰减。因此,探寻具有类铂电子结构的碳化钨催化剂,且同时具备高效的解离水和脱氢催化活性,成为未来碳化钨基碱性HER催化剂设计的关键。

      经过近十年的快速发展,单原子材料在均相、非均相体系中取得了远高于常规体相材料的催化活性。近来,以单原子材料作为母材,通过外界的热、光、电等因素的刺激诱导,可以合成出比母材更高催化活性的原子团簇材料。究其原因,主要是介于单原子和纳米晶之间的亚纳米团簇材料活性位点之间的空间几何距离更近、位点之间直接以金属键键合、金属键/非金属键均处于不饱和配位状态,这些优势使得原子团簇材料理论上在小分子(HER, OER, ORR, NRR, CO2RR等等)催化反应中底物的吸附、活化和产物吸/脱附上具有更佳的活性。但是,目前报道的单原子母材反向合成原子团簇材料的工作,仅仅停留在在管式炉中定温度的碎片式制备,从单原子到纳米晶演变过程电子结构的细微变化,目前仍然难以捕捉和解析,这使得原子团簇的可控合成难度非常大。纳米真空互联实验站(Nano-X)的近常压X-射线光电子能谱(NAP-XPS)可以在不同温度、气氛条件下模拟管式炉的合成条件,直接在变温条件下记录目标元素的光电子能谱。

      近期,中国科学院苏州纳米所Nano-X崔义研究员联合先进材料部赵志刚研究员团队基于前期对钨单原子材料制备(Nano Energy 2019, 60, 394–403)和钨电催化析氢反应(Nano Energy 2020, 68, 104335)的研究,进一步地,以单原子钨作为母材,基于热迁移团聚策略,依托苏州纳米所Nano-X的NAP-XPS表征设备,原位揭示了单原子-钨原子团簇-碳化钨纳米晶生长过程电子结构的演变机制,基于NAP-XPS与手套箱电化学工作站真空互联的优势,准原位解析了钨原子团簇的碱性HER催化机制。合成和催化机制的原位/准原位解析有助于加速类铂、高活性碱性HER钨团簇催化剂的开发。

     该研究工作为亚纳米级原子团簇材料的可控合成和相关电催化机制的解析提供了一种全新研究思路。相关工作以Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction为题发表于国际知名期刊Nature Communications,本文的共同第一作者是中国科学院苏州纳米所Nano-X博士后陈志刚和苏州大学功能纳米与软物质研究院博士研究生许雅枫,通讯作者为中国科学院苏州纳米所研究员崔义和赵志刚。同时,基于上述工作的原位表征基础,崔义研究员团队在W-Ni双金属合金碱性电催化析氢反应上也取得了初步进展,相关工作以Tungsten-nickel alloy boosts alkaline hydrogen evolution reaction为题发表于The Journal of Physical Chemistry C,相关论文的共同第一作者是中国科学院苏州纳米所Nano-X硕士研究生杨娜娜和博士后陈志刚,通讯作者为中国科学院苏州纳米所研究员崔义和博士后陈志刚。上述研究工作得到了国家自然科学基金面上项目、国家自然科学青年基金、中国科学院青年科学家项目、中国科学院青年交叉团队、江苏省博士后基金和Nano-X的大力支持。

      相关文章链接:

      https://www.nature.com/articles/s41467-022-28413-6

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202204/t20220429_6441041.html
相关报告
  • 《苏州纳米所崔义团队:金属型W/WO2固体酸催化剂促进碱性电解水制氢》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-09-07
    •   氢气作为一种高热焓、零碳排放的能源,在未来绿色能源社会中扮演着重要的角色。通过电解水的形式将太阳能、水能、风能等可持续能源以电能的形式转化成化学能储存在氢气中是一条非常经济且绿色的产氢途径。碱水电解产氢可以避免酸腐蚀电极和催化剂的腐蚀溶解,达到高效制备纯氢的目的,同时也能与其它工业半反应(氯碱化工)联用,显示出更广泛的应用前景。相比于酸性环境中质子直接耦合电子的析氢反应(2H+ + 2e-→H2↑),碱性介质中质子的缺乏需要通过额外的水电离补充(H2O + e- → H* + OH-),这直接导致其电解水析氢活性比酸性环境低2~3个数量级,极大地阻碍了碱水电解析氢反应的规模化应用。   由于可调的化学和电子结构,过渡金属氧化物是碱水电解析氢的潜在优质催化剂。特别是后元素周期表的钨/钼基氧化物催化剂,由于其比前过渡周期常用的3d磁性金属Fe, Co, Ni等元素具有更宽的价态调控区间(0~+6),使得其在电催化应用中具有更强的化学和电子结构调控能力。针对碱水电解缺质子的关键科学问题,后元素周期表的钨/钼氧化物可以通过形成常见的弱酸中间体(钨酸/钨青铜HxWOy,钼酸/钼青铜HxMoOy)来调控催化剂表层的酸度,进而创造一种类酸性环境促进表层析氢反应的发生,而传统的3d磁性金属仅能形成诸如Fe(OH)2, Co(OH)2, Ni(OH)2类的碱性氢氧化物,显然,钨/钼氧化物在碱性电解液中构建类酸催化界面层的优势是其它金属氧化物所不具备的,这也是我们设计固体酸催化剂应用于碱性电解水析氢反应的初衷。   在本工作中,研究者通过合理的热处理条件,在泡沫镍基底上设计出W/WO2金属型异质结材料,其中WO2作为一类比较特殊的氧化钨物种,兼具金属和氧化物的特性,其丰富的氧缺陷环境和金属特性,使得W/WO2催化剂表层类酸界面更容易形成(WO2 + H2O + e- → HxWOy + OH-),同时金属特性以及阴极保护的特点导致水电离和溶液中的OH-对氧化钨本体的腐蚀减弱(WOx + OH- → WO42- + H2O),更加有利于W/WO2固体酸长效稳定地催化碱水电解制氢反应。   碱性环境中捕捉W/WO2异质结催化剂表层HxWOy中间产物,成为鉴定催化剂表层类酸催化界面构建成功的关键。崔义研究员团队充分发挥苏州纳米所真空互联实验装置(Nano-X)在能源催化方向的表征优势,进行了如下工作:首先,针对WO2与H2O分子反应形成钨青铜HxWOy这一过程,研究者通过近常压X-射线光电子能谱(NAP-XPS)的通水测试(0.1 mbar)(图1a),发现W/WO2异质结材料具有优异的解水能力,主要特征是代表氧缺陷的O 1s XPS特征峰在通水后消失,而W-OH和H2O吸附峰出现(图1b和c),充分说明了W/WO2表层吸附水和解离水的能力;其次,W/WO2异质结材料经过碱水电解产氢反应后,研究者通过二次离子飞行质谱(TOF-SIMS)成功捕捉到催化剂表层产生大量的水合氢离子(H3O+),这充分说明催化剂表面已经酸化(图1 d, e, f);最后,通过反射电子能量损失谱(REELS)证实了W/WO2表面氢元素的浓度是与施加电位相关的,施加低于30 mV的超低过电位即可导致催化剂表层酸化程度趋向商业钨酸材料(H2WO4)(图1g)。因此,结合Nano-X相关谱学表征,研究者成功获得W/WO2异质结材料在碱水电解析氢过程中表层酸化的证据。   同时,为了进一步确认酸化中间产物的化学特性,结合热催化过程常见的谱学表征,研究者利用氢固体核磁(1H MAS NMR, 图1h)和吡啶红外(Py-IR, 图1i)分别证实了W/WO2中氢的化学环境趋向商业H2WO4,同时Py-IR表征则证实了W/WO2表层形成的HxWOy酸化物种具有布朗斯特酸特性,即质子的吸附和脱附特性,说明构建的W/WO2异质结材料本质上是一类固体酸材料。   该研究工作为廉价钨钼基氧化物材料高效稳定地催化碱水电解制氢提供了一种全新研究思路。相关工作以Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte为题发表于期刊Nature Communications,论文的共同第一作者是中国科学院苏州纳米所i-lab/Nano-X博士后陈志刚(已入职重庆理工大学)、徐州工程学院巩文斌博士和上海同步辐射光源王娟助理研究员,通讯作者为中国科学院苏州纳米所崔义研究员。上述研究工作得到了国家自然科学基金面上项目、青年项目、中国科学院青年科学家项目、中国科学院青年交叉团队、江苏省博士后基金和Nano-X平台的支持。
  • 《苏州纳米所蔺洪振研究团队在原位构建功能CEI层促进高容量锂离子电池方面取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-06-07
    •  长续航电动汽车与便携式智能设备的快速发展对可充电二次电池的能量密度提出了更高的要求。目前商业化锂离子电池正极材料的能量密度有限,严重限制了其进一步发展。金属硫化物具有较高的理论比容量(890mA h g-1),可以显著提高锂电池的能量密度。然而,金属硫化物作为电极材料时存在多硫化锂“穿梭”的问题,这会降低电极的容量和库伦效率并缩短电池寿命,严重阻碍了金属硫化物电极的商业化进程。中国科学院苏州纳米所蔺洪振团队在前期研究中发现,构筑有序结构的SEI人工层能够有效抑制枝晶的生长(Adv. Funct. Mater. 2022, 31, 2110468; Adv. Funct. Mater. 2021, 31, 2007434; ACS Appl. Mater. Interface 2019, 11, 30500),通过调控锂离子的动力学行为及加快多硫化物的转化,能获得长的循环寿命(Chem. Eng. J. 2021, 132352; Nano Lett. 2021, 21, 3245; Energy Environ. Mater.2021,0,1; Chem. Eng. J. 2020, 128172; Energy Storage Mater. 2019, 18, 246; Energy Storage Mater. 2020, 28, 375; ChemSusChem 2020, 13, 3404; Chem. Eng. J. 2020, 417, 2007434; Nano Energy 2017, 40, 390; J. Power Sources 2016, 321, 193)。   针对金属硫化物电极多硫化物“穿梭效应”的问题,中国科学院苏州纳米所王健博士(现为德国亥姆赫兹电化学研究所洪堡学者)与蔺洪振研究员联合西安理工大学张静博士从表界面功能化角度出发,在金属硫化物电极表面原位构建了一层均匀致密且富含LiF-Li3N的功能正极界面(CEI)层,选用界面选择性和频光谱(SFG)、飞行式二次离子质谱(TOF-SIMS)、X射线光谱(XPS)及原子力显微镜(AFM)等多手段联合研究了功能性CEI层的演变过程及其相关作用机制。   如图1所示,LiTFSI盐会在金属硫化物电极表面形成不连续的无效CEI层。而将高反应活性LiFSI盐添加到LiTFSI-DME电解液体系中,LiFSI会与LiTFSI竞争后均匀地吸附在电极表面,并在后续电化学过程中生成一层均匀致密且富含LiF-Li3N的功能CEI层,该CEI层可以有效抑制多硫化锂的“穿梭效应”并加快锂离子的扩散速率。   三维氮掺杂纳米碳包覆的二硫化亚铁(FeS2@3DNPC)合成流程如图2所示。XRD及XPS结果表明此复合材料为较纯Pyrite相的FeS2。从扫描电子显微镜图可以看出FeS2纳米颗粒成功均匀地嵌入三维纳米碳骨架中,为FeS2构建了良好的导电网络。  通过将不同摩尔浓度的高活性LiFSI离子液体添加到LiTFSI-DME电解液中,探究LiFSI离子液体含量对改性CEI层的影响。从电池的首次循环伏安曲线可以看出,添加LiFSI的金属硫化物电极表面形成了功能化的CEI层。阻抗结合循环伏安曲线表明,添加1.0 M LiFSI FeS2@3DNPC电极表面形成稳定的功能CEI层,有效抑制多硫化锂的“穿梭效应”获得较高的电化学可逆性。 通过SFG、AFM、SEM及 XPS表征结果揭示了功能CEI层的存在方式,即均匀分布于金属硫化物电极表面且柔韧性好,其主要成分为LiF和Li3N(图4)。其中,SFG的研究发现了FSI-与TFSI- 在电极界面存在竞争吸附关系。为了更加准确获取功能CEI层的界面结构信息,研究团队借助TOF-SIMS重构了功能CEI层的成分与3D结构(图5)。TOF-SIMS重构的功能CEI层成分均匀且致密,同时,在CEI层的作用下,循环后的FeS2仍保持了完整的颗粒形貌,充分证明CEI层可以抑制多硫化物穿梭,提升电极的可逆性,这与SEM mapping等2D表征结果相吻合。  添加1M LiFSI的电池在容量、库伦效率及容量保持率方面,均高于其他添加量和空白样品,并且优于绝大多数文献报道的结果(图6)。得益于均匀致密且柔韧性好的功能CEI层,即使在超高功率密度(6700W kg-1)下,电池仍获得较高的能量密度(769W h kg-1),稳定循环1000次后每圈衰减率低至0.039%。研究团队还将此方法成功应用于其他硫化物电极,表明原位构建功能CEI的策略可以助力金属硫化物电极实现快速充电及长循环寿命。   以上研究成果的第一作者为王健博士、程双,通讯作者为王健、张静、蔺洪振研究员,以Robust Interfacial Engineering Construction to Alleviate Polysulfide Shuttling in Metal Sulfide Electrodes for Achieving Fast-charge High-capacity Lithium Storages为题,发表在Chemical Engineering Journal期刊上。以上工作受到了江苏省自然科学基金、国家重点研发计划、国家自然科学基金等基金项目支持。