Skip to content
Accessibility Links
Skip to content
Skip to search IOPscience
Skip to Journals list
Accessibility help
IOP Science home
Accessibility Help
Search
Journals
Journals list
Browse more than 100 science journal titles
Subject collections
Read the very best research published in IOP journals
Publishing partners
Partner organisations and publications
Open access
IOP Publishing open access policy guide
IOP Conference Series
Read open access proceedings from science conferences worldwide
Books
Publishing Support
Login
IOPscience login / Sign Up
Close
Click here to close this panel.
Search all IOPscience content
Article Lookup
Select journal (required)
Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)
Volume number:
Issue number (if known):
Article or page number:
Nanotechnology
Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
We are proudly declaring that science is our only shareholder.
ACCEPTED MANUSCRIPT
Improved-quality graphene films via the synergism of large nanosheet aligning and nanotube bridging for flexible supercapacitors
Xuan Xu1, Zhenhu Li1, Haoxiang Li2, Yongsu Li1, Yu Zeng1 and Shuangyi Liu1
Accepted Manuscript online 25 July 2024
?
© 2024 IOP Publishing Ltd
What is an Accepted Manuscript?
DOI 10.1088/1361-6528/ad6774
Download Accepted Manuscript PDF
Figures
Skip to each figure in the article
Tables
Skip to each table in the article
References
Citations
Article data
Skip to each data item in the article
What
is article data?
Open science
Article metrics
Submit
Submit to this Journal
Permissions
Get permission to re-use this article
Share this article
Article and author information
Author e-mailslizhenhu@cigit.ac.cn
Author affiliations1
Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P.R. China, Chongqing, Sichuan, 400714, CHINA
2
Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P.R. China, Chongqing, Sichuan, 401122, CHINA
ORCID iDsZhenhu Li https://orcid.org/0000-0001-8574-783X
Dates
Received 17 January 2024
Revised 22 April 2024
Accepted 25 July 2024
Accepted Manuscript online 25 July 2024
Peer review information
Method: Single-anonymous
Revisions: 1
Screened for originality? Yes
Journal RSS
Sign up for new issue notifications
10.1088/1361-6528/ad6774
Abstract
Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties are desirable candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films generated from the assemble process would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrades their ionic kinetics and thus limits their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive and capacitive graphene films. Typically, two-dimensional (2D) large graphene sheets (LGS) induce regular stacking of GO during assembling process to reduce wrinkles, while one-dimensional (1D) single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically makes fine microstructure with improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote the electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes than those of original rGO films. Moreover, owing to the comprehensive improved properties, the flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility and excellent cycling stability (93.8% capacitance retention after 10000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics.
Export citation and abstract
BibTeX
RIS
During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.
After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0
Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.
Back to top
10.1088/1361-6528/ad6774
You may also like
Journal articles
Improving sensor response using reduced graphene oxide film transistor biosensor by controlling the adsorption of pyrene as an anchor molecule
Functional chemically modified graphene film: microstructure and electrical transport behavior
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
Inkjet-Printed Reduced Graphene Oxide (rGO) Films For Electrocatalytic Applications
Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors
Solution-based, flexible, and transparent patterned reduced graphene oxide electrodes for lab-on-chip applications
IOPscience
Journals
Books
IOP Conference Series
About IOPscience
Contact Us
Developing countries access
IOP Publishing open
access policy
Accessibility
IOP Publishing
Copyright 2024 IOP Publishing
Terms and Conditions
Disclaimer
Privacy
and Cookie Policy
Publishing Support
Authors
Reviewers
Conference
Organisers
This site uses cookies. By continuing to use this
site you agree to our use of cookies.
IOP Publishing Twitter page
IOP Publishing Facebook page
IOP Publishing LinkedIn page
IOP Publishing Youtube page
IOP Publishing WeChat QR code
IOP Publishing Weibo page