《中国科学院团队揭秘微生物免疫系统“暗物质”之谜》

  • 来源专题:转基因生物新品种培育
  • 编译者: 王晶静
  • 发布时间:2021-06-07
  • 记者从中国科学院微生物研究所(中国科学院微生物所)获悉,该所研究员向华/李明团队最新从自然界分布最广泛的微生物适应性免疫系统CRISPR-Cas基因簇内部,发现了对CRISPR-Cas具护卫功能的RNA“暗物质”系统。 中国科学家在微生物领域这一重大发现及科研成果论文,4月30日由国际顶级学术期刊《科学》(Science)在线发表。该项研究对基因编辑技术发展、新型药物设计研发等有可能产生深远影响。 中国科学院微生物所介绍说,向华团队是中国最早开展CRISPR-Cas生物学研究的团队之一,此前已在CRISPR-Cas抗病毒适应机制领域取得系统性成果。近期,向华团队与李明团队合作,在自然界分布最广泛的I型CRISPR-Cas基因簇内部再次取得重大发现,首次揭示出一类从未报道过的对所偶联的CRISPR-Cas系统具护卫功能的双RNA毒素-抗毒素(CreTA)系统,解析了其RNA毒素的分子机制及基于CRISPR-Cas系统的RNA抗毒素的调控机制。 该项研究发现不仅为理解CRISPR-Cas系统的稳定性维持和广泛性分布提供了全新视角,同时还揭示出一大类在不同微生物中前所未知且功能多样的非编码小RNA的存在。这类前所未知且功能多样的非编码小RNA,曾被科学家们形象称为基因组中的“暗物质”。 向华/李明团队表示,后续对这些丰富多样的微生物基因组“暗物质”的深入发掘,将进一步推动生物技术发展,包括对基因组编辑工具的完善、抗肿瘤小RNA的药物设计、新型抗生素的研发等都或将具有重要启发意义。 据了解,CRISPR-Cas是一种广泛存在于微生物中的适应性免疫系统。作为国际科学前沿,全球学界对该系统的研究,已促成迄今最高效的CRISPR-Cas9基因组编辑技术和基因检测技术得到应用,其中,CRISPR-Cas9基因组编辑技术获得2020年诺贝尔化学奖。

  • 原文来源:http://www.cas.cn/cm/202105/t20210506_4786673.shtml
相关报告
  • 《中国科学院微生物研究所研究发现裂谷热病毒治疗性抗体》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-04-11
    • 裂谷热病毒(Rift Valley fever virus,RVFV)属于布尼亚病毒目白纤病毒科白蛉病毒属。经蚊虫传播,可感染动物和人。RVFV可引起反刍动物流产,而且患病幼崽死亡率近100%,历史上RVFV曾对畜牧业造成多次重创。人感染后通常出现发热、头痛、出血、休克等症状,严重者甚至死亡。2000年至2018年6月,全球向WHO通报RVFV重症感染病例4830例,其中967例死亡病例,病死率近20%。然而,自1931年鉴定以来,目前仍无商业化的人用疫苗和特异性治疗药物。RVFV的流行地区主要集中在非洲,但是2000年,RVFV突破地域限制,登陆阿拉伯半岛,在沙特阿拉伯和也门地区造成大范围疫情。2016年,我国也报道一例输入病例。因此,RVFV是典型的、可造成新发突发传染病疫情的高危病原。 中国科学院微生物研究所微生物生理与代谢工程重点实验室研究员严景华长期从事治疗性抗体和新型疫苗研究,研发了针对MERS冠状病毒(MERS-CoV)的新型疫苗及在动物模型上有预防和保护作用的MERS-CoV人源化抗体。严景华与中国科学院院士、微生物所微生物与免疫学重点实验室研究员高福合作,曾率先筛选出Zika病毒人源中和抗体。此次两个团队再次合作,面向国家重大需求,在一例RVFV感染的康复病人体内率先分离到高效中和RVFV感染的单克隆抗体。该抗体在小鼠模型上能有效治疗RVFV感染,有望成为治疗其感染的候选药物。4月1日,该研究成果以Neutralization mechanism of human monoclonal antibodies against Rift Valley fever virus 为题发表在《自然-微生物学》(Nature Microbiology)上。 RVFV病毒表面含有Gn和Gc两种囊膜蛋白,是负责病毒与细胞粘附和膜融合的关键蛋白。高福团队曾率先解析白蛉病毒属重症伴血小板减少综合征病毒(SFTSV)与RVFV的Gn的结构。针对RVFV的感染,研究团队首先检测到一例RVFV感染患者体内存在高水平的Gn和Gc的结合抗体,说明Gn与Gc可以同时激发人体的免疫反应。因此以Gn和Gc为“诱饵”,研究团队从康复患者的体内筛选到8株结合Gn及1株结合Gc的抗体。然后,通过细胞水平的中和实验,研究团队发现靶向Gn的抗体具有极高的中和活性。相比之下,分离到的Gc抗体则显示出较弱的中和活性。相应地,在小鼠感染模型上,Gn特异性抗体也显示良好的预防和治疗RVFV感染的效果,而Gc抗体则无明显保护作用。研究团队进一步通过流式分析发现Gn抗体可以阻断Gn蛋白以及RVFV病毒粒子对易感细胞的粘附,而Gc抗体则没有这样的效果。这些结果说明Gn抗体通过结合到病毒粒子上的Gn,阻断病毒与细胞的粘附,从而中和RVFV的感染。研究团队分别解析了Gn与4株中和抗体的复合物结构,鉴别出Gn的结构域I(domain I, DI)上存在3个中和抗体结合位点(A,B与C),其中抗原位点A与B是中和抗体的结合热点,超过半数的Gn抗体都靶向A与B。 此项研究首次揭示出RVFV感染人体时Gn是优势抗原,并且Gn上存在至少2个中和抗体的结合热点,这为RVFV疫苗的设计提供重要的理论基础。更为重要的是,研究团队筛选、分离到的高效人源中和抗体将成为预防和治疗RVFV感染的重要候选药物。
  • 《中国科学院微生物所揭示护卫CRISPR-Cas的全新毒素-抗毒素RNA系统》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2021-05-07
    • 2020年,基于CRISPR-Cas9系统建立的基因组编辑技术获得“2020年度诺贝尔化学奖”。该生物技术起源于科学家对微生物中一种特殊的免疫系统(即CRISPR-Cas系统)的研究。CRISPR-Cas系统是在原核微生物(古菌和细菌)中广泛存在的抗病毒(噬菌体)免疫系统。宿主菌通过将入侵病毒的特定DNA序列插入其CRISPR结构中,可形成对该病毒的永久性“记忆”。这些记忆性序列(称为spacer)可转录加工生成crRNA,指导CRISPR-Cas系统效应物(如Cas9或Cascade复合物)特异性识别和切割再次入侵的病毒,实现对该类病毒的适应性免疫。CRISPR-Cas系统丰富多样的功能组分和核酸靶向机制,为人类提供了迄今最高效的基因组编辑技术(如CRISPR-Cas9系统)和基因检测技术(如CRISPR-Cas13a系统),是近十余年来生命科学研究的前沿。 CRISPR-Cas系统在微生物基因组中稳定性维持是其抗病毒功能实现的关键基础。一方面,CRISPR-Cas系统具有自我免疫的风险,并可能阻碍有益外源基因的获取,因此可对宿主细胞造成适合度代价(fitness cost)而可能在进化过程中频繁丢失。另一方面,微生物宿主与其病毒的“军备竞赛”中,CRISPR-Cas系统也会成为病毒反攻(Anti-CRISPR)的目标而丧失功能。面对多重的进化压力和适应性挑战,CRISPR-Cas系统为何能在微生物中广泛存在(存在于约90%的古菌和40%细菌中)并发挥其功能?在微生物宿主基因组中是否存在一类保护CRISPR-Cas功能但至今尚未被揭示的“暗物质”?这些问题有待进一步探究。 2021年4月30日,Science以长文形式在线发表了中国科学院微生物研究所研究员向华/李明团队的最新研究成果,论文题目为Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems。科研人员首次在自然界分布广泛的I型CRISPR-Cas基因簇内部发现了一类特殊的RNA“暗物质”:一类对其偶联的CRISPR-Cas系统具护卫功能的一对RNA的毒素-抗毒素(CreTA)系统。由于CRISPR-Cas系统可利用RNA抗毒素CreA控制RNA毒素CreT的表达,使宿主菌无法丢失其CRISPR-Cas系统(对其“上瘾”)。一旦CRISPR-Cas组分被破坏,就会诱导CreT毒素的表达,从而抑制甚或杀死该宿主菌(图1),从而保护CRISPR-Cas系统在细胞群体中的稳定存在。“成瘾”机制的发现为理解CRISPR-Cas系统的稳定性维持和广泛性分布提供了全新视角,研究还揭示了一大类新的功能多样的小RNA(曾被称为基因组中的“暗物质”),开辟了新的研究领域。 2014年,向华/李明团队即利用西班牙盐盒菌(Haloarcula hispanica)及其病毒在国际上建立了第一个I型CRISPR系统的高效适应模型,揭示出CRISPR系统对病毒高效适应需要引发的规律,并深入解析了“引发适应”过程精细的分子机制,包括Cascade与crRNA的可塑性。研究发现,4个成簇的编码CRISPR效应复合物Cascade的基因(cas6-cas8-cas7-cas5)无法单独敲除,但可作为整体一起敲除,从而推测这个基因簇内部可能隐藏了一个未知的“细胞成瘾”元件。经过7年探索,科研人员最终在cas6与cas8之间一段仅311 bp的基因间区内发现一类新的小RNA毒素-抗毒素系统,分别命名为CreT(RNA毒素)和CreA(RNA抗毒素)。CreTA通过与CRISPR效应复合物4个编码基因的结构与功能的偶联,守护了CRISPR-Cas系统的稳定性(图1)。该研究的主要创新性发现包括:首次发现受Cascade蛋白控制的小RNA毒素;解析了小分子RNA毒素CreT独特的抑菌机制;发现CreA抗毒素——类似crRNA的小分子RNA;揭示CreA RNA联合Cascade发挥抗毒素活性的分子机制;揭示CreTA对CRISPR-Cas系统的护卫功能;揭示CreTA同源或类似系统在不同微生物和不同CRISPR亚型中的普遍存在。 微生物所研究员向华和李明为该论文共同通讯作者,李明、向华研究组博士后龚路遥和博士生程飞跃为论文并列第一作者。美国国立卫生研究院(NIH)生物技术信息中心(NCBI)教授Eugene Koonin及其团队给予了帮助。研究工作得到中国科学院战略性先导科技专项、国家重点研发计划、国家自然科学基金、国家转基因重大科技专项、中国科协青年人才托举工程和中国科学院青年创新促进会等的支持。原文链接:https://science.sciencemag.org/content/372/6541/eabe5601 (原标题:微生物所揭示护卫CRISPR-Cas的全新毒素-抗毒素RNA系统)