《植生生态所科研人员在聚酮类化合物代谢模块适配优化研究中取得突破》

  • 来源专题:转基因技术
  • 编译者: 雷洁
  • 发布时间:2016-03-10
  • 在天然产物合成生物学中,异源代谢模块的导入往往与宿主内源各模块间产生“适配性差”等兼容问题,从而影响目标化合物产率的提升。如何快速评估和优化适配性差的模块一直是一项充满挑战的工作。2月29日,国际学术期刊Biotechnology Journal发表了中国科学院上海生命科学研究院植物生理生态研究所王勇研究组题为“Construction of polyketide overproducing Escherichia coli strains via synthetic antisense RNAs based on in silico fluxome analysis and comparative transcriptome analysis”的研究论文。该研究提出了一种描述模块相互作用的系统方法,并用于改善大肠杆菌异源合成聚酮类化合物6-脱氧红霉内酯B(6dEB)中存在的模块适配问题。

      通过结合流量组模拟分析和转录组分析,该研究首次发现了6dEB合成过程中不同代谢模块内流量变化的整体趋势存在巨大差异,并在对这些差异进行系统分析后找到了改善6dEB生物合成的潜在遗传改造靶点。随后,利用反义RNA技术研究人员首次对大肠杆菌磷酸戊糖途径模块及核苷酸代谢模块上的25个预测靶点进行改造以提高6dEB的合成水平。结果显示,单独下调18个基因靶点的表达分别使6dEB的产率提升至少20%以上,而模块间的优势靶点组合改造则提升了60%以上,这一策略使6dEB的合成水平提升了296.2%,摇瓶发酵的产量达到了210.4 mg/L,这是目前聚酮类化合物在大肠杆菌中异源合成的最高水平。该研究提供了一种模块适配诊断、优化的有效方法,可广泛用于改善底盘细胞中的异源产物合成产率,也展示了反义RNA技术在代谢工程中的良好前景。

      该项工作得到了中国科学院相关人才计划、国家科技部、国家自然科学基金委的支持。(植生生态所)

相关报告
  • 《卢山教授团队在植物萜类代谢研究中再次取得突破》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-24
    • 萜类是自然界中种类最多的天然产物。一些萜类化合物(如类胡萝卜素、叶绿素、赤霉素)对植物的生长发育至关重要,而另一些(如单萜、二萜植保素等)则在植物对环境的适应过程中发挥作用。很多萜类化合物还是重要的药用成分(如青蒿素、紫杉醇等)。在这些化合物的合成途径中,其链长受到不同异戊烯基转移酶的决定。异戊烯基转移酶中的法尼基二磷酸合酶(FPPS)在细胞质中产物C15的代谢中间产物FPP,用于合成倍半萜(如青蒿素)和三萜(如甾醇);而在叶绿体中牻牛儿基二磷酸合酶(GPPS)产生C10的GPP用于合成挥发性的单萜化合物(如柠檬烯、芳樟醇),牻牛儿基牻牛儿基二磷酸合酶(GGPPS)则催化合成C20的GGPP,用于包括类胡萝卜素、叶绿素、维生素E等一系列重要化合物的合成。 该生命科学学院卢山教授团队的研究描述了植物在进化中由GGPPS逐渐获得GPP合成能力,并最终形成GPPS的过程,并且利用分子动力学模拟等手段解析了决定产物链长的两个氨基酸位点。 在以往的报道中,GPPS通常出现在裸子植物中,而被子植物往往利用一个I类小亚基蛋白(SSUI)通过蛋白-蛋白相互作用,将GGPPS的产物从C20的GGPP“临时”修改为C10的GPP。在2017年,卢山教授课题组在水稻中发现了一个真正的GPPS,并由此展开了对GPPS起源与演化的研究工作(Zhou et al. 2017. PNAS. 114: 6860-6865)。在近日发表的论文中,通过对来自不同物种的一系列GGPPS的功能鉴定,他们发现在蓝细菌和藻类植物中,GGPPS通常只能专一地合成GGPP。随着在苔藓植物中的基因家族扩张,一些GGPPS逐渐产生了合成GPP的能力,而这一能力在蕨类植物中得到发展,并最终形成裸子植物中功能专一的GPPS (图1)。与此同时,在苔藓植物中还出现了由GGPPS向无催化功能的小亚基蛋白的分化。该分化首先在蕨类和裸子植物中形成了对GGPPS酶活具有促进能力的II类小亚基(SSUII),并最终在被子植物中产生了能够改变GGPPS用于合成GPP的I类小亚基(SSUI) (图1)。利用GGPPS-SSUI组合取代单一的GPPS来产生GPP,在保障GGPPS功能(植物的生长和发育)的前提下,赋予了被子植物萜类代谢更大的自由度。 在对水稻GPPS的功能解析中,他们发现GGPPS的一个亮氨酸-缬氨酸(LV)氨基酸对如果突变为缬氨酸-丙氨酸(VA),则产物从GGPP变为GPP。这两个氨基酸在GGPPS容纳反应中间产物和催化进一步延伸的过程中至关重要。这一发现解释了裸子植物中GPPS的产生过程。此外,本研究首次将分子动力学模拟技术应用于异戊烯基转移酶的功能解析。研究表明,在GGPPS的VA突变体中,位于VA位点附近的多个氨基酸之间的距离缩短,减少了反应腔对较大中间产物的容纳能力(图2);而与此同时,GGPPS突变体中GPP与IPP的距离加大,难以进行下一步的延伸反应,因此更加趋于释放GPP作为催化的最终产物(图3)。 近日,该成果以The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase (https://doi.org/10.1093/plcell/koad083 )为题在植物学领域久负盛名的学术刊物The Plant Cell在线发表。本研究得到国家自然科学基金等项目的支持。研究人员来自南京大学、澳大利亚拉筹伯大学(La Trobe University和美国普渡大学(Purdue University)。该论文的第一作者是卢山教授实验室2017级博士研究生宋书言(现于浙江大学从事博士后研究);该文来自La Trobe大学的共同第一作者金瑞涛、何思潼为我校2015届毕业生。
  • 《真菌聚酮化合物组合生物合成研究取得新进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:雷洁
    • 发布时间:2016-04-20
    • 聚酮化合物是天然产物中的一大家族,化学结构和生物活性多样,在农业和临床上具有重要价值,如杀虫剂阿维菌素和降血脂药洛伐他汀等。天然聚酮化合物一般要经过结构改造才能提高药效,但天然聚酮含有较多立体异构和取代基等复杂的化学结构,利用化学合成和修饰非常困难,因此,在阐明其生物合成途径的基础上,利用微生物代谢途径的多样性,通过不同合成模块的重新组合是实现复杂手性化合物结构改进和药效提高的有效措施。 大部分农业和临床使用的聚酮类化合物都来源于细菌,随着从细菌中筛选新型聚酮类化合物机率的降低,从真菌中获得聚酮化合物日益受到关注。在细菌和真菌中,分别有不同的聚酮生物合成系统。对于细菌聚酮化合物生物合成的机制研究比较深入,通过异源基因组合共表达,能够实现细菌聚酮抗生素的工程化合成,但对于真菌,由于其聚酮化合物程序化合成的机制研究不深入,目前还不能大规模实现真菌聚酮工程化的组合生物合成。 在研究真菌聚酮程序化生物合成机制和合成模块相互作用规律的基础上,通过重新组合具有抗癌、消炎、杀虫、提高植物耐热等生物活性的苯二酚内酯生物合成模块,在酿酒酵母中实现了活性提高的系列新型真菌聚酮化合物的一步合成。本研究继续拓宽真菌聚酮化合物组合生物合成的范围,通过苯二酚内酯合成模块与具有抗真菌生物活性的嗜氮酮合成模块的组合,生物合成了新型聚酮化合物。研究成果不仅为揭示天然聚酮类化合物的程序化生物合成机制奠定了重要理论基础,而且也为大规模实现新型真菌聚酮类抗生素的工程化生物合成提供了创新的方法。