来自波士顿儿童医院的科学家们通过将两种预测方法同机器学习技术(人工智能技术)相结合就能成功评估本地的流感活动情况。
这种被称为ARGONet的新方法被应用于2014年9月至2017年5月的流感季节,其要比研究人员此前开发的方法ARGO具有更高的准确率。研究者表示,在美国各州发布的传统卫生保健报告前一周,ARGONet方法能对迄今为止的流感活动作出最准确的预测。
为了改善预测准确率,研究者所开发的ARGONet方法添加了第二个模块,其能利用邻近地区流感传播的时空模式,同时该方法还基于这一事实,即流感在附近地区的存在或会增加特定地点发生疾病暴发的风险。这种机器学习系统能通过输入两种模型和实际流感数据来进行有效训练,并帮助减少预测中的错误,该系统能持续评估每一种独立方法的预测能力,并能重新校准这些信息应该如何用于进行对流感风险的预测。