《科学家成功利用多股数据流和人工智能技术来预测流感的暴发和传播》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-01-18
  • 流感具有高度的传染性,其会随着人们四处走动而迅速传播,因此这就使得追踪并且预测流感传播活动成为了科学家们的一大挑战;美国CDC会实时监测美国流感样疾病患者的就诊情况,这些信息可能要比实际时间滞后大约两周;近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自波士顿儿童医院的科学家们通过将两种预测方法同机器学习技术(人工智能技术)相结合就能成功评估本地的流感活动情况。

    这种被称为ARGONet的新方法被应用于2014年9月至2017年5月的流感季节,其要比研究人员此前开发的方法ARGO具有更高的准确率。研究者表示,在美国各州发布的传统卫生保健报告前一周,ARGONet方法能对迄今为止的流感活动作出最准确的预测。

    研究者Mauricio Santillana表示,这种及时可靠的追踪各地流感活动的方法能帮助有效减轻流行病的暴发,并能有效提高公众对潜在风险的意识。ARGONet方法能利用机器学习和两种强大的流感检测模型进行研究;第一个模型—ARGO能利用来自电子健康的记录、流感相关的谷歌搜索即特定地点的流感历史活动信息,这项研究中,仅ARGO模型就超过了谷歌流感趋势的预测系统,谷歌预测系统是2008年-2015年运行的一个预测系统。

    为了改善预测准确率,研究者所开发的ARGONet方法添加了第二个模块,其能利用邻近地区流感传播的时空模式,同时该方法还基于这一事实,即流感在附近地区的存在或会增加特定地点发生疾病暴发的风险。这种机器学习系统能通过输入两种模型和实际流感数据来进行有效训练,并帮助减少预测中的错误,该系统能持续评估每一种独立方法的预测能力,并能重新校准这些信息应该如何用于进行对流感风险的预测。

    研究者Fred Lu说道,这种新方法或将为感染性疾病的有效预防奠定基础,随着越来越多在线搜索数据以及来自医疗服务提供者基于云计算的电子健康记录的收集,这种新型模型未来将会对疾病暴发和流行进行更加准确地预测。

  • 原文来源:https://www.nature.com/articles/s41467-018-08082-0
相关报告
  • 《利用多股数据流和人工智能技术来预测流感的暴发和传播》

    • 来源专题:重大疾病防治
    • 编译者:梅梅
    • 发布时间:2019-07-12
    • 来自波士顿儿童医院的科学家们通过将两种预测方法同机器学习技术(人工智能技术)相结合就能成功评估本地的流感活动情况。 这种被称为ARGONet的新方法被应用于2014年9月至2017年5月的流感季节,其要比研究人员此前开发的方法ARGO具有更高的准确率。研究者表示,在美国各州发布的传统卫生保健报告前一周,ARGONet方法能对迄今为止的流感活动作出最准确的预测。 为了改善预测准确率,研究者所开发的ARGONet方法添加了第二个模块,其能利用邻近地区流感传播的时空模式,同时该方法还基于这一事实,即流感在附近地区的存在或会增加特定地点发生疾病暴发的风险。这种机器学习系统能通过输入两种模型和实际流感数据来进行有效训练,并帮助减少预测中的错误,该系统能持续评估每一种独立方法的预测能力,并能重新校准这些信息应该如何用于进行对流感风险的预测。
  • 《日本科学家利用人工智能帮助探测热带气旋前兆》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2019-01-04
    • 日本国立海洋研究开发机构(JAMSTEC)地球信息科学与技术中心的Daisuke Matsuoka博士和九州大学的Seiichi Uchida教授领导的一个研究小组成功地提出了一种识别热带气旋及其前体的深度学习方法。 在传统方法中,台风和飓风等热带气旋的预测通常采用基于观测数据的气候模型和从卫星数据监测云发展的模型驱动方法进行。在这项研究中,研究小组应用了数据驱动方法,使用深度学习的方法得到大量的模拟数据,从而检测正在发展的热带气旋的前兆,并检验检测结果的准确性。 为了确保在深度学习中准确识别,需要大量的数据,每个类别需要超过几千个例子。因此,科学家首先将热带气旋跟踪算法应用于NICAM(非流体静力学二十面体大气模型)生成的20年气候模拟数据,并创建了5万张热带气旋和发展中的热带气旋前兆云图。他们还根据上述50000张云图结合100万张没有发展成热带气旋的云图创建了10组训练数据集,总共制作了1,050,000张图像。使用深度卷积神经网络算法,通过机器学习形成了10种不同特征的分类器。通过对10种不同类型的分类器结果进行综合评价,建立了一个整体分类器进行最终判断,发现利用NICAM的气候模拟数据可以更准确地检测出热带气旋的前兆。 然而,要在热带气旋实际发生之前对其进行预测,仍需进一步改进训练方法和数据集,确保卫星观测云图和数据同化实时模拟数据的探测能力达到相同水平。通过在这一领域采用人工智能技术进行深度学习,有望在数据驱动和模型驱动相结合的基础上,为海洋和地球科学大数据分析带来新的发展。 相关研究结果已于2018年12月19日发表在《地球与行星科学进展》期刊上。 (王琳 编译)