《钙钛矿电池效率新高,香港理大发表25.5%效率技术》

  • 来源专题:广州能源研究所信息监测
  • 编译者: giecinfo
  • 发布时间:2016-04-14
  • 钙钛矿太阳能电池于2009年正式问世,但转换效率仅3.8%。学界对钙钛矿电池一直抱有高度兴趣,香港理工大学(理大)日前发表超高效钙钛矿/单晶硅层叠太阳能电池,转换效率可达25.5%,写下新的全球纪录。

    钙钛矿太阳能电池被视为高效太阳能电池的潜力技术。钙钛矿具有优越的光伏功效,因此在学界一直是热门的研究主题。理大电子及信息工程学系徐星全教授领军一支科研团队,透过新技术研发出转换效率25.5%的高效钙钛矿/单晶硅层叠太阳能电池,可将太阳能电池的成本从现行硅基电池的每瓦3.9港元大幅降低到每瓦2.73港元。

    理大科研团队解释,太阳能光谱由各种不同的能量波段组成,因此结合多种光伏材料来制造太阳能电池,就能吸收不同波段的阳光,增加电池片整体阳光吸收量,并提升发电量。钙钛矿/硅层叠电池的原理即是透过多种材料层叠的方式弥补对方的不足,由钙钛矿材料吸收短波段光子、底层的硅材料则吸收较长波段的光子,创造出转换效率更高的太阳能电池。

    在技术面上,理大科研团队的高效钙钛矿/单晶硅层叠电池技术有三:

    第一,透过氧低温钝化程序的化学反应来减少钙钛矿材料缺陷的影响。

    第二,团队研发可用于钙钛矿电池的高透明三氧化钼/金/三氧化钼叠层电极,并将此电极设定至最佳厚度提高电极对长波段光子的透明度,让更多光能量进入钙钛矿电池底层的硅晶电池中。

    第三,研发仿生花瓣限光薄膜,并将其“吸附”于电池表面,捕捉更多光线。该薄膜由理大纺织及制衣学系的博士郑子剑研发,纹理仿制玫瑰花瓣。

    此外,本次所采用的底层硅晶电池之设计与制造者是中山大学、顺德中山大学太阳能研究院沈辉教授与其团队。理大科研团队表示将继续努力提升钙钛矿/硅层叠太阳能电池的转换效率,并研发更大面积的电池。

    (照片来源:香港理工大学)

相关报告
  • 《香港研发有机框架钙钛矿太阳能电池 效率高达22.02%》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-10-01
    •  香港城市大学的科学家开发了一种基于2D共轭金属有机框架的钙钛矿太阳能电池,该框架在钙钛矿和阴极之间的界面起着电子提取层的作用。   香港城市大学的研究人员声称已开发出一种更稳定,更高效的全无机钙钛矿太阳能电池,经认证的效率为15.6%。据科学家称,该设备是迄今为止开发出的最高效的全无机钙钛矿倒置电池。   研究人员声称,他们的设备是第一个钙钛矿电池,提供良好的长期稳定性和高功率转换效率的同时,他们还表示,它还提供减少铅泄漏。   城市大学小组说,金属有机骨架(MOF)材料以前已经在钙钛矿的研究中使用,但重点是使用它们钝化钙钛矿本身的缺陷。   香港集团用一个以硫醇基团为主要功能的二维结构取代了易受低电荷载体迁移率影响的三维金属有机框架。这些基团由一个硫原子和两个孤对组成,与氢结合,这种结构被用作界面修饰剂,以提高钙钛矿太阳能电池的性能和稳定性。   在评论硫醇组时,城市大学的团队说:“它们拥有合适的能量水平,使它们成为电子提取层,电子最终被钙钛矿太阳能电池的电极收集。我们的分子工程MOFs具有多功能半导体的特性,可用于提高电荷提取效率。”    城市大学的太阳能电池效率为22.02%,填充系数为81.28%,开路电压为1.2 v。学者们表示:“转换效率和开路电压都是平面反向钙钛矿太阳能电池中最高的。”    据说,该设备在加速测试条件下,在85摄氏度下,在最大功率点跟踪1000小时,可以保持90%以上的初始效率。   科学家认为他们的电池比其他钙钛矿设备遭受的铅泄漏更少。研究表明,MOF用作PVSC(钙钛矿太阳能电池)装置的外层,可从降解的钙钛矿中捕获超过80%的泄漏铅离子,并形成不会污染土壤的水不溶性复合物。
  • 《效率创新高!反型钙钛矿电池效率突破24%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-02-22
    • 华东师范大学教授方俊锋团队与中国科学院宁波材料技术与工程研究所副研究员李晓冬合作,在《科学》杂志发表论文,介绍了他们在反型钙钛矿太阳能电池研究方面的最新成果。 “(该研究)创造了新的反型钙钛矿电池效率世界纪录,转化效率首次实现大于24%。”《科学》杂志审稿人评价说。 另一位审稿人则认为,该研究突破了反型器件效率低这一长期困扰钙钛矿电池发展的瓶颈,为钙钛矿电池研究开辟了新的思路与方向。 有望实现低成本光伏发电 在全球气候变化和“双碳”目标下,光伏技术发展受到世界各国的广泛重视。钙钛矿太阳能电池成本低、效率高,被认为是最有希望实现低成本发电的新型光伏技术之一。 钙钛矿太阳能电池是利用钙钛矿型“有机—金属卤化物杂化”半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也被称为新概念太阳能电池。 “钙钛矿电池分为正型N-I-P电池和反型P-I-N电池。相对正型,反型钙钛矿电池有其自身优势,可低温制备、工艺简单、稳定性好,同时能与晶硅电池兼容,实现叠层电池的制备。”方俊锋告诉《中国科学报》,反型钙钛矿/晶硅叠层是钙钛矿电池商业化应用的路径之一。 此外,反型钙钛矿电池无需使用具有光催化活性的TiO2以及掺杂的有机空穴传输层,光照下的输出稳定性更好,因此更具发展潜力。 “尽管反型器件具有诸多优势,但目前高效率的钙钛矿电池基本上都是正型器件。正型钙钛矿电池效率已达25%,而反型钙钛矿电池的最高效率仍维持在22%~23%。”方俊锋说,“因此,如何缩小正反型器件效率差距,实现高效稳定反型器件的制备,一直是钙钛矿电池研究领域的焦点和难点问题。” 电池效率创新高 经过反复实验论证,该课题组采用构筑表面异质结、提高器件内建电场的思路,首先在钙钛矿表面旋涂上吡啶—2—羧酸铅制备富铅层,随后用高反应活性的六甲基二硅硫醚进行硫化,原位形成PbS-I层,实现钙钛矿表面费米能级的上移和能带弯曲,从而在钙钛矿界面处引入额外背场,构建出高效的界面异质结,在抑制界面复合的同时,还能显著提高器件开路电压。 基于此方法,研究人员用稳定性好的含羧酸基团聚噻吩衍生物作为空穴传输层,富勒烯衍生物PCBM作为电子传输层,首次将反型钙钛矿电池的转化效率提高到24%以上。 “通过构筑性能优异的界面异质结,使钙钛矿表面的费米能级上移,从而在界面处引入一个额外电场,抑制界面复合,是实现反型电池高效率的主要原因。”该论文第一作者李晓冬对《中国科学报》说。 实用化指日可待 除了提高反型钙钛矿电池的转化效率,该研究还实现了电池稳定性的大幅提升。 “对于所有太阳能电池来说,没有稳定性就无法实际应用。”李晓冬说,“对钙钛矿电池来说,稳定性格外重要,这也是目前制约钙钛矿电池走向商业化的瓶颈。” 研究人员发现,Pb-S键强度远高于钙钛矿中的Pb-I键,可以有效抑制老化过程中钙钛矿的衰减,同时Pb-S键与钙钛矿的晶格参数接近,能够进一步稳定钙钛矿的晶体结构,从而实现电池稳定性的大幅提升。 实验表明,利用Pb-S键,电池经过2200小时的高温(85℃)加速老化测试,其效率仍可以保持在初始值的91.8%。光照下(55℃±5℃),经过1000小时的连续最大功率输出加速老化测试,效率也能稳定在初始值的90%以上。 “这为反型钙钛矿电池研究提供了一个新的思路与方向。”方俊锋说,“通过合理优化设计,反型钙钛矿电池完全可以实现兼具高效率和高稳定性。” 业界认为,钙钛矿电池作为当前最具潜力的新型光伏技术,在国家宏观政策、产业界的支持以及科研人员的配合下,极有希望走向大规模商业应用。 “未来将继续围绕高效稳定的反型钙钛矿电池展开深入研究,探索构建高效界面异质结的新方案,进一步提升器件效率和稳定性。”谈及这项研究的应用前景,方俊锋说,“我们也会开展一些大面积钙钛矿电池模组研究,推动钙钛矿电池走向实用化。”