《香港研发有机框架钙钛矿太阳能电池 效率高达22.02%》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-10-01
  •  香港城市大学的科学家开发了一种基于2D共轭金属有机框架的钙钛矿太阳能电池,该框架在钙钛矿和阴极之间的界面起着电子提取层的作用。
      香港城市大学的研究人员声称已开发出一种更稳定,更高效的全无机钙钛矿太阳能电池,经认证的效率为15.6%。据科学家称,该设备是迄今为止开发出的最高效的全无机钙钛矿倒置电池。
      研究人员声称,他们的设备是第一个钙钛矿电池,提供良好的长期稳定性和高功率转换效率的同时,他们还表示,它还提供减少铅泄漏。
      城市大学小组说,金属有机骨架(MOF)材料以前已经在钙钛矿的研究中使用,但重点是使用它们钝化钙钛矿本身的缺陷。
      香港集团用一个以硫醇基团为主要功能的二维结构取代了易受低电荷载体迁移率影响的三维金属有机框架。这些基团由一个硫原子和两个孤对组成,与氢结合,这种结构被用作界面修饰剂,以提高钙钛矿太阳能电池的性能和稳定性。
      在评论硫醇组时,城市大学的团队说:“它们拥有合适的能量水平,使它们成为电子提取层,电子最终被钙钛矿太阳能电池的电极收集。我们的分子工程MOFs具有多功能半导体的特性,可用于提高电荷提取效率。” 
      城市大学的太阳能电池效率为22.02%,填充系数为81.28%,开路电压为1.2 v。学者们表示:“转换效率和开路电压都是平面反向钙钛矿太阳能电池中最高的。” 
      据说,该设备在加速测试条件下,在85摄氏度下,在最大功率点跟踪1000小时,可以保持90%以上的初始效率。
      科学家认为他们的电池比其他钙钛矿设备遭受的铅泄漏更少。研究表明,MOF用作PVSC(钙钛矿太阳能电池)装置的外层,可从降解的钙钛矿中捕获超过80%的泄漏铅离子,并形成不会污染土壤的水不溶性复合物。

相关报告
  • 《钙钛矿电池效率新高,香港理大发表25.5%效率技术》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-04-14
    • 钙钛矿太阳能电池于2009年正式问世,但转换效率仅3.8%。学界对钙钛矿电池一直抱有高度兴趣,香港理工大学(理大)日前发表超高效钙钛矿/单晶硅层叠太阳能电池,转换效率可达25.5%,写下新的全球纪录。 钙钛矿太阳能电池被视为高效太阳能电池的潜力技术。钙钛矿具有优越的光伏功效,因此在学界一直是热门的研究主题。理大电子及信息工程学系徐星全教授领军一支科研团队,透过新技术研发出转换效率25.5%的高效钙钛矿/单晶硅层叠太阳能电池,可将太阳能电池的成本从现行硅基电池的每瓦3.9港元大幅降低到每瓦2.73港元。 理大科研团队解释,太阳能光谱由各种不同的能量波段组成,因此结合多种光伏材料来制造太阳能电池,就能吸收不同波段的阳光,增加电池片整体阳光吸收量,并提升发电量。钙钛矿/硅层叠电池的原理即是透过多种材料层叠的方式弥补对方的不足,由钙钛矿材料吸收短波段光子、底层的硅材料则吸收较长波段的光子,创造出转换效率更高的太阳能电池。 在技术面上,理大科研团队的高效钙钛矿/单晶硅层叠电池技术有三: 第一,透过氧低温钝化程序的化学反应来减少钙钛矿材料缺陷的影响。 第二,团队研发可用于钙钛矿电池的高透明三氧化钼/金/三氧化钼叠层电极,并将此电极设定至最佳厚度提高电极对长波段光子的透明度,让更多光能量进入钙钛矿电池底层的硅晶电池中。 第三,研发仿生花瓣限光薄膜,并将其“吸附”于电池表面,捕捉更多光线。该薄膜由理大纺织及制衣学系的博士郑子剑研发,纹理仿制玫瑰花瓣。 此外,本次所采用的底层硅晶电池之设计与制造者是中山大学、顺德中山大学太阳能研究院沈辉教授与其团队。理大科研团队表示将继续努力提升钙钛矿/硅层叠太阳能电池的转换效率,并研发更大面积的电池。 (照片来源:香港理工大学)
  • 《Nature子刊:钙钛矿太阳能电池研究获重要进展!》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-11
    • 3月7日,北京大学工学院周欢萍团队与合作者在碱性调控钙钛矿太阳能电池缺陷性质和结晶动力学的研究中取得重要进展,相关工作发表在著名期刊《自然·通讯》。 论文链接:https://www.nature.com/articles/s41467-019-09093-1 有机-无机杂化钙钛矿作为一种新兴的光电半导体材料,因其诸多优异的光电特性和低廉的制造成本,而受到了世界范围内的研究人员的广泛关注。从2009年至今,通过对钙钛矿材料性质、太阳能电池器件结构以及相关界面的不断深入研究,钙钛矿太阳能电池的光电转化效率从3.8%提升到了23.7%。不同于传统的硅材料,有机-无机杂化钙钛矿通常被认为是一种较软的离子晶体,在其多晶薄膜中容易形成各种各样的点缺陷(如空位、间隙离子、反位取代等),它们往往作为非辐射复合中心,影响薄膜的光致发光的量子效率,降低太阳能器件的光伏性能。 近年来,人们一直在努力探索这些缺陷,以揭示其形成和消除的机理。研究发现,缺陷的形成与溶液状态和加工条件息息相关,同时,通过添加合适的添加剂,改变溶液状态,控制薄膜加工条件,可以降低钙钛矿多晶薄膜中缺陷密度,从而提高相应的器件的光电转化效率。然而,目前对于如何大幅度消除各类碘基有机-无机杂化钙钛矿中的深能级缺陷,如间隙碘,还缺少普适可靠的手段。 (a) 弱碱性消除钙钛矿薄膜深能级缺陷示意图。(b) 碱性影响钙钛矿薄膜结晶动力学示意图 针对这一问题,周欢萍课题组及合作者,通过在前驱液中引入碱性物种,促使单质碘杂质在不同的碱性环境下发生歧化反应,有效的抑制和消除了前驱液中的单质碘杂质。同时,碱性的引入进一步地影响了钙钛矿薄膜的结晶动力学和缺陷性质,大幅度提升了相应的钙钛矿光伏器件的开路电压和光电转化效率。该工作深入系统地研究了不同碱性强弱对前驱液中碘单质的歧化反应(碱性介质可使大部分零价碘缺陷还原成碘离子)、成膜过程中黄相黑相的结晶动力学(弱碱性介质有利于光活性相黑相的形成,而强碱性介质则抑制光活性相黑相形成)、钙钛矿薄膜中缺陷态密度的影响。 同时,以乙酸甲脒作为一种“无残留”的弱碱性物质为例,可以有效地调控混卤钙钛矿(FA,MA,Cs)Pb(I,Br)3前驱体中阳离子的化学计量比,同时通过消除前驱液中的碘单质,大幅降低其薄膜中深层缺陷的密度。据此,该课题组成功制备了经美国Newport认证的20.87%效率的混卤钙钛矿太阳能电池,同时,开路电压损失也降低至413 mV,为平面钙钛矿太阳能电池中认证值电压损失最小的器件之一。 太阳能电池光伏性能。(a) PVSK和PVSK-FA器件的电流-电压曲线。(b) 左图:PVSK和PVSK-FA薄膜的吸收和PL光谱;右图:PVSK和PVSK-FA器件开路电压统计直方图。(c) PVSK-FA器件的正反扫。(d) PVSK-FA器件的稳态电流密度和效率。PVSK和PVSK-FA器件的 (e) 瞬态光电压衰减曲线和 (f) 变光强开路电压曲线 该论文的第一作者是周欢萍课题组2016级博士生陈怡华。周欢萍特聘研究员为通讯作者。合作者还包括北京理工大学陈棋课题组、香港科技大学黄勃龙课题组、南京工业大学王建浦课题组、国家纳米中心刘新风课题组、澳门大学邢贵川教授、中国科学院上海高等研究院李东栋研究员等。该工作得到了国家自然科学基金委、科技部、北京市自然科学基金、先进电池材料理论与技术北京市重点实验室等的联合资助。