《鼻内给药:纳米颗粒与鼻-脑通路之间的相互作用》

  • 来源专题:生物医药
  • 编译者: 杜慧
  • 发布时间:2024-03-01
  • 鼻内给药为药物到达中枢神经系统提供了一种直接和非侵入性的方法。纳米颗粒作为载体在增强大脑输送的功效方面发挥着至关重要的作用。然而,纳米颗粒和鼻-脑通路之间的相互作用以及各种生物因素如何影响脑递送功效仍不清楚。在这篇综述中,我们全面总结了鼻-脑通路的解剖和生理特征以及阻碍脑递送的障碍。然后,我们概述了纳米颗粒与该途径之间的相互作用,并回顾了各种纳米颗粒药物递送系统在鼻-脑药物递送中的生物医学应用。这篇综述旨在启发创新方法,提高鼻-脑给药在治疗不同脑部疾病中的有效性。



  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0169409X24000188
相关报告
  • 《粘液对纳米颗粒经上皮给药的作用》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2017-11-15
    • 药物和药物输送系统的粘膜给药已经引起越来越多的兴趣。然而,旨在保护和递送药物至上皮表面的纳米颗粒需要通过表面衬里粘液转运。由于各种参数会影响包括腔内液,微生物群,粘液成分和清除速率以及下层上皮细胞状况在内的粘液的特定屏障特性,所以从实验到用于临床对于粘膜给药特别具有挑战性。此外,给药后,纳米颗粒与粘膜组分相互作用,形成生物分子电晕,调节其粘膜给药后的行为和命运。这些相互作用受纳米粒子性质的很大影响,因此已经提出了不同的设计和表面工程策略。总的来说,通过使用复杂和相关粘液屏障矩阵的互补技术评估这些生物分子 - 纳米颗粒的相互作用是至关重要的。
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。