《Metab Eng:开发出基于CRISPR/Cas9的CasPER,高效地对酶进行基因改造》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-08-25
  • 在一项新的研究中,来自丹麦技术大学、美国劳伦斯伯克利国家实验室、加州大学伯克利分校和中国科学院深圳先进技术研究院的研究人员开发出一种基于CRISPR/Cas9的方法,从而能够灵活地对必需的酶和非必需的酶进行基因改造。这有很多应用,包括开发产生基于生物的药物、食品添加剂、燃料和化妆品的方法。相关研究结果发表在2018年7月的Metabolic Engineering期刊上,论文标题为“CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9”。

    丹麦技术大学诺和诺德基金会生物可持续发展中心研究员Tadas Jakociunas说,“当有生产菌株时,这将使得更容易对生物合成通路中的某些限制酶进行基因改造,提高它们的效率、特异性或多样性。人们将能够发现这个通路中的最好的酶变体,这会增加有价值的化合物的产量。”

    这种新开发的方法称为CasPER,并且是基于CRISPR/Cas9等现有技术构建出来的,其中,CRISPR/Cas9近年来已用于酵母中的基因组改造和重编程。然而,这种新的工具能够让科学家们通过整合更长的多样化片段来对酶或它们的活性结构域进行基因改造,从而提供了靶向特定基因组区域中的每个碱基的机会。在酵母中,CasPER能够以几乎100%的效率整合发生突变的DNA片段,甚至能够以多重的方式进行整合。

    发现酶变体

    通过对这种新方法进行深入分析,这些研究人员得出结论:与现存的CRISPR/Cas9方法之间的主要差别在于CasPER允许高效地和以多重的方式整合携带着多种突变的大片段DNA,从而产生具有数十万种酶变体的细胞库。

    尽管其他的CRISPR方法主要依赖于整合较短的序列而让DNA多样化,而且这需要多轮基因改造,但是CasPER显著拓宽了接受基因改造的DNA片段的长度。此外,它不需要任何额外的步骤,这使得更快和更有效地让酶多样化,从而产生更高产量的所需化学物。

    筛选平台

    比如,在引入CRISPR/Cas9之前,对酵母中的必需酶进行基因改造是一个相当缓慢的过程。如今,对酶进行更加高效和特异性的基因改造是可行的,这就允许它们将更多的底物转化为产物。

    Jakociunas说,“构建用于产生有价值化合物的细胞工厂仍然是非常昂贵和耗时的,因此将所有这些资金和时间投入在基因改造上需要得到回报。你需要生产一定数量的产品以让它具有商业相关性,而且像CasPER这样的工具肯定有助于加速和放大这个过程。”

    作为这项研究的概念验证,这些研究人员靶向了甲羟戊酸途径(mevalonate pathway)中的几种必需的酶。这种生物合成途径负责甾醇的产生,并且在大多数有机体中是必需的。从对人类的研究来看,它因是他汀类药物的靶标而广为人所知,其中他汀类药物是一类降胆固醇药物。这类药物通过抑制该途径中的一些步骤而发挥作用。在一些细菌和真核生物中,该途径负责产生最大的一类化合物---类异戊二烯(isoprenoid)。为了证实CasPER的适用性和效率,他们靶向了甲羟戊酸途径中的两种必需酶,并且能够构建细胞工厂,从而将类胡萝卜素的产量增加了11倍。

    在行业和学术界的巨大潜力

    在未来,CasPER能够广泛用于学术界和行业。尽管这种方法的主要应用是加速设计和优化细胞工厂,并降低这种设计和优化的成本,但是它也能够应用于需要DNA多样化的任何实验。

    Jakociunas说,“你能够研究蛋白功能以便开发蛋白结构预测工具,以及研究蛋白与DNA、底物和其他分子之间的相互作用以便让启动子、终止子和增强子之类的调控元件多样化。”

    这种方法在酵母中得到验证,但是它也能够用于其他的具有高效的同源重组机制的有机体。

  • 原文来源:https://linkinghub.elsevier.com/retrieve/pii/S109671761830123X
相关报告
  • 《基因魔剪CRISPR/Cas9新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-03-20
    • CRISPR/Cas系统是从原核生物中发现的一种防御外源性遗传物质入侵的自身免疫机制,主要分为三种类型:Type I、Type II和Type III。而常用的CRISPR/Cas9系统是由II型改造而来,具有核酸酶活性,并能够通过向导RNA的作用靶向性结合生物基因组任何区域的目的基因,进而实现对目标基因的编辑。该系统最早被开发并最成熟的是Streptococcus pyogenes Cas9 (SpCas9),它具有较高的切割活性和保真性,是目前研究最深入的Cas酶之一。它识别的序列需要临近3’端有一段序列,即PAM(protospacer adjacent motif)。经典的PAM是NGG,而非经典PAM序列是NAG(N指 A/T/C/G)【1,2】。 在哺乳动物细胞中,SpCas9对靶位点在PAM为NGG时编辑效率是NAG的15倍;而中国水稻研究所王克剑教授团队对水稻基因组进行编辑时,则发现SpCas9在NAG位点的编辑效率约为NGG位点的76.44%,且保真性更高【3】。笔者利用人类细胞对应的报告系统对16个不同的PAM序列进行筛选后发现,SpCas9在部分位点对PAM为NGA的有效切割效率分别是NGG、NAG位点的0.5倍和2倍【4】。这项研究显示野生型SpCas9在人类细胞中可以利用其他非经典的PAM,但是效率并不高,也提示挖掘适用范围更广的SpCas9是有可能的。 古诗云:“长江后浪推前浪,浮事新人换旧人。”同样,在CRISPR的“舞台”上更是新秀迭出。 2018年1月29日Nature Biotechnology 在线发表的文章A highly specific SpCas9 variant is identified by in vivo screening in yeast介绍了一种筛选SpCas9突变体的方法——酵母报告菌株筛选法。利用易错突变在SpCas9的REC3结构域处制造随机突变并构建突变体库,然后经酵母报告菌株(yACMO-off1–4)进行筛选并鉴别出较优突变体(图1)。研究者将筛选出的四个较优突变体进行组合突变,产生了最优突变体——evoCas9(evolved Cas9)。该突变体除了具有良好的靶向性和切割活性,它最突出的特点是超高的保真度,比之于野生型SpCas9提高了79倍【5】。鉴于此,evoCas9在基因编辑为基础的基因治疗方面将具有重要意义。 无独有偶,2018年2月28日Nature在线发表了Evolved Cas9 variants with broad PAM compatibility and high DNA specificity。在该项研究中,为了更快速获得理想的SpCas9突变体,David Liu团队使用了独门秘籍——PACE(phage-assisted continuous evolution)(图2,图3)。其实早在2011年,Nature 就刊登了David Liu 的另一篇文章A System for the continuous directed evolution of biomolecules,介绍了PACE定向进化技术【6】。该方法与以往在Cas酶编码基因序列中人为地制造突变,再利用原核/真核细胞进行功能筛选不同。PACE所使用的大肠杆菌含有诱导突变发生的质粒MP(mutagenesis)和激活后能表达PⅢ(噬菌体存活的必需基因)的质粒AP(accessory plasmid)。研究者们把需要突变的Cas酶蛋白编码基因序列放进噬菌体基因组,转染宿主大肠杆菌。PACE利用噬菌体繁殖周期短的特点,对Cas酶进行大批量、持续性的突变并定向筛选噬菌体。这项PACE技术通过把生物分子的实验室进化和噬菌体的生命周期结合在一起,一周内就能够实现成百上千次的传代变异,在诱变效率上比传统方法提高了100倍。 在PACE技术的助攻下,突变体CRISPR/xCas9 3.7的出现,如雨后春雷,给基因编辑的应用发展带来了历史性的变革。比之于SpCas9,由SpCas9进化而来的xCas9 3.7有着更多的潜力。第一,xCas9 3.7具有更灵活的PAM选择性,能识别更大范围的PAM序列,包括NGG、NG、GAA和GAT;第二,它具有更优的靶向转录激活性和更强的切割基因的能力;第三,新构建单碱基编辑器xCas9(3.7)–BE3能够对致病性突变位点进行C?G→T?A和A?T→G?C的碱基替换,其效率分别高达73%和71%,明显优于SpCas9–BE3;第四,xCas9 3.7表现出极强的特异性,在PAM为NGG的EMX1基因靶位点处甚至没有脱靶。但令人困惑不解的是,xCas9 3.7的PAM序列识别灵活性、酶活性和保真性同时得到优化的现象突破了以往三者之间存在某种制衡的概念。目前这项工作仍然留下了不少需要回答的问题。另外,文献里报道的这些突变体(包括之前报道的基于结构为基础的突变体,如eCas9)平行比较实验也需要进行,如此可让大家了解这些工具,更好地选择最合适的工具。 实现高效的单碱基编辑一直是研究者们孜孜以求的目标,David Liu实验室在2017年报道过一种应用于哺乳动物细胞新型的腺嘌呤碱基编辑器ABE,借此编辑器实现A?T→G?C的转变【7】,当然其编辑效率远低于xCas9(3.7)–BE3。而中国科学院上海植物逆境生物学研究中心朱健康研究组在水稻中开发了一种新的腺嘌呤碱基编辑器ABEP2,其识别靶位点依赖于SaCas9(PAM序列NNGRRT),能够对水稻基因组的多个目标基因位点同时进行高效的碱基替换,甚至某些位点的编辑效率达61.3%,而且ABEP2精确性也很高【8】。总之,单碱基编辑器对精准编辑目的基因的研究意义非凡,就目前而言xCas9(3.7)–BE3无疑是 “利器”。 随着不同国家、不同地域的研究者们在CRISPR领域孜孜探索,人类基因组编辑技术的发展日新月异,新的方法和工具层出不穷。我们希望研究者们能够解析xCas9 3.7活性、保真性、PAM序列灵活性三者能够同时得到优化的机制,相信在此基础上,会有更快速、简便、高效、精准的基因编辑技术出现,被更广泛应用于疾病诊疗上、动植物育种等方面。但是,现有的技术水平距离人类基因编辑的需求仍有一定的距离,而xCas9 3.7(由SpCas9进化而来)的出现犹如利刃出鞘,将会极大地促进基因组编辑领域的进程。 这里需要提及的是,多种各具特色的Cas9中,在体内有优势的是SaCas9 (staphylococcus aureus Cas9)。2015年张峰实验室首先确定了SaCas9在哺乳动物细胞中的基因编辑作用,并对晶体结构进行了详细的分析。它的基因长度为3300bp,比SpCas9减少了约25%,这有助于SaCas9被载入腺相关病毒(AAV),增加了基因治疗应用的潜力;它识别的PAM是NNGRRT(N指A、T、C、G;R指A、G),在切割活性和靶向精准度上的表现均不输于SpCas9【9,10】。笔者实验室建立了双报告系统来评估基因组编辑工具的活性和PAM【11】,分别检测SpCas9、SaCas9和FnCpf1在不同位点上的基因组编辑活性,经过多重比较得出结论——SaCas9拥有比SpCas9和FnCpf1更高的活性【12】。因此,SaCas9凭借其分子量小和活性高的特点,在基因编辑应用中占据优势,更为简便高效。关于SaCas9的工程化改造可能对于基因组编辑为基础的临床治疗有重大意义。 在功能基因组学上,CRISPR家族新成员Cpf1因为能够同时完成多个基因的编辑,所以优势很明显【13】。国际上较为广泛采用的AsCpfl和LbCpfl对PAM序列有较为苛刻的要求(TTTN),极大程度上限制了Cpfl在实际应用中的靶位点的选择【14,15】。为了增加Cpf1靶序列的选择范围,笔者发现FnCpf1——其识别的PAM序列更加灵活(KYTV,K为G/T,Y为T/C,V为A/C/G),在人类细胞中具有较高的基因组编辑活性,这些为人类(含其他哺乳动物)基因组编辑提供了更多的工具【16】。如果能够进一步提高其保真性和活性,可能对于功能基因组学研究和临床疾病治疗非常有意义。另外,Cpf1家族对应的CrRNA较短,故而在工业化合成CrRNA方面更有优势。 综合上述,虽然xCas9 3.7的发现将让人类具有更加“锋利”和“通用性更强”的基因组编辑剪刀,但是它可能仍然无法做到基因组工具中“一统天下”,新的工具仍然需要研发和优化,从而实现“人定胜天”。
  • 《Nature子刊:北京大学胡家志团队开发出更为安全的Cas9变体Cas9TX》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-13
    • CRISPR-Cas 核酸酶是目前最为广泛使用的基因编辑工具,在基础科研以及临床应用方面都有着广阔的应用前景。然而除了脱靶活性,CRISPR-Cas 还会产生染色体易位以及染色体大片段缺失等染色体结构异常,这些副产物严重威胁了基因组的稳定性,并与癌症的发生相关,因此成为CRISPR-Cas应用的一大障碍。 2021年10月,一名淋巴瘤患者在接受 Allogene 公司的经过基因编辑的下一代通用型 CAR-T候选药物 ALLO-501A 治疗后,他的所有血细胞系都减少了,活检分析发现他的体内出现了具有染色体异位的 CAR-T细胞。由于染色体异位可能导致癌症发生,考虑到这种严重的潜在风险,FDA暂停了Allogene 公司的所有CAR-T临床试验。 随着基因编辑临床应用的不断普及,被编辑细胞出现不可控染色体易位等的病人的数量也必然会将逐渐增加。而由于缺乏针对基因编辑过程中染色体结构异常发生机制的了解,领域内尚没有抑制该类副产物发生的有效策略。 北京大学生命科学学院、北大-清华生命科学联合中心胡家志课题组在 Nature Communications 期刊发表了题为:Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing 的研究论文【1】。 该研究揭示了基因编辑过程中染色体易位产生的分子机制,并针对性地设计和开发了安全性大幅提高的新型基因编辑酶——Cas9TX。Cas9TX能抑制基因编辑过程中染色体易位、大片段缺失等染色体结构异常的产生,将CRISPR-Cas9基因编辑的安全性大大提高,其编辑过程中的DNA损伤被降低到与目前被认为最安全的碱基编辑器(Base Editor)相当的水平。Cas9TX可能是目前最为安全的CRISPR-Cas9编辑变体。 值得一提的是,研究团队将Cas9TX应用于下一代通用型CAR-T细胞制作中,发现在不影响CAR-T杀伤效率的同时,Cas9TX将靶向位点之间的染色体易位降低到了背景水平。 基于胡家志课题组2019年开发的全面评估基因编辑安全性的方法PEM-seq【2】,研究团队首先评估了新一代CAR-T技术的安全性。PEM-seq方法的详细操作指南也于2022年公开发表于Cell系列的STAR protocols上【3】。 下一代通用型CAR-T细胞的构建结合了基因编辑技术,在生产CAR-T细胞的同时敲除TRAC,B2M,PDCD1等多个基因,可降低供体与受体之间的免疫排斥反应,实现异体移植的可能,并同时提高CAR-T细胞的杀伤能力。在该研究中,作者首先利用PEM-seq检测了新一代CAR-T细胞中染色体结构异常的发生概率,分析表明染色体易位普遍发生于多个Cas9的靶向位点之间,其比例占到了总编辑事件的1%左右。这意味着在CAR-T细胞疗法中,每给病人回输10^8个CAR-T细胞便有多于10^6个细胞携带染色体易位。 而值得注意的是,以往的关于淋巴瘤的研究表明,TRAC附近存在可以大幅促进基因表达的转录增强子,可以提升易位后附近原癌基因的表达水平。该研究进一步指出目前领域内常用于消除脱靶活性的Cas9高保真变体并不能有效抑制Cas9靶向位点之间染色体易位的发生(图1)。 为了探究基因编辑过程中染色体易位发生的规律,该研究对PEM-seq数据进行了详细的分析,作者意外地发现Cas9靶向位点与脱靶位点两端发生的易位连接存在着明显的方向偏好性。按理DNA发生切割后两种末端应该是随机结合的,不具有偏好性,而实际上的末端结合偏离了理论值1:1的比例(图2上)。通过这样一个“真奇怪”的发现(注:艾萨克·阿西莫夫曾说,在科学探索中能听到的最激动人心、可能预示着新发现的一句话,不是“我找到了”,而是“真奇怪”。),研究团队找到了基因编辑过程中染色体易位大量发生的主要原因之一,即Cas9在靶位点和脱靶位点上的反复切割(repeated cleavage)(图2下)。这一机制的发现也解决了困扰 Fred Alt 等实验室近十年之久的一个问题:为何G1晚期的细胞比生长中的细胞更容易形成染色体易位? 随后作者尝试将核酸外切酶与Cas9相偶联,通过在编辑过程中修饰DNA断裂末端来减少完美修复产物的比例,从而抑制Cas9反复切割(图2下)。通过对多种外切酶的筛选,本研究最终将优化过的人源TREX2蛋白与Cas9相偶联生成核酸内外切酶Cas9TX,PEM-seq分析显示Cas9TX确实可以抑制Cas9反复切割,并几乎消除了染色体易位的产生。接着作者通过全基因测序等手段验证了Cas9TX并不会对基因组造成非特异性的切割,它可以稳定、有效地抑制消除染色体易位的产生,并达到了与造成DNA单链断裂的碱基编辑器同等的水平。另外研究人员发现Cas9TX还可大幅度减少染色体大片段缺失的生成。 与此同时,在抑制染色质结构异常发生的同时,Cas9TX还能保持与Cas9同水平或者略高的基因编辑水平。另值得指出的是,突变的TREX2仅236个氨基酸,不会显着增加Cas9的大小(图3)。 研究团队还进一步将Cas9TX应用于下一代通用型CAR-T细胞的制备,发现在不影响CAR-T杀伤效果的同时,Cas9TX将靶向位点之间的染色体易位降低到了背景水平(图4)。 除了CAR-T细胞制作这种ex vivo的基因编辑案例,研究团队还将Cas9TX应用于in vivo眼部疾病模型年龄相关性黄斑变性(AMD)的小鼠模型中,他们发现Cas9TX在消除染色体易位的同时,还可以极大抑制AAV载体的整合。总之,Cas9TX展现出了惊人的效果。