《研究人员开发出新型Cas9核酸酶 提高基因编辑安全性》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-07
  • CRISPR/Cas9基因编辑技术问世以来已经在很多领域得到广泛的应用。利用这一技术开发的基因疗法在医疗健康领域中具有巨大的应用前景。CRISPR/Cas9技术能够对基因组在指定位点进行基因编辑,但是对这项技术的一个常见的忧虑是担心基因编辑会在不该出现的地方发生。日前,英国巴斯大学(University of Bath)和卡迪夫大学(Cardiff University)的研究人员利用合成生物学(synthetic biology)技术开发出一种新型Cas9核酸酶。它让CRISPR/Cas9基因编辑系统的活性受到一个低成本、丰富、无毒的氨基酸的调控,从而让CRISPR/Cas9技术更为安全可控。这项研究发表在最新一期的《Scientific Reports》期刊上。

    CRISPR/Cas9技术的重要一环是名为Cas9的核酸酶,它能够切断双链DNA,从而介导基因编辑的产生。理想的Cas9应该在需要完成基因编辑任务时表达,在完成基因编辑任务后失活。在调控Cas9核酸酶活性的研究领域,科学家们已经获得了重大进展,目前Cas9核酸酶的活性可以被光、温度、以及抗生素调控,但是这些调控手段都有不同的缺陷。例如,利用抗生素调控的Cas9核酸酶通常无法完全抑制Cas9的活性,而且使用抗生素可能影响动物的微生物组,从而产生其它的副作用,并且可能导致自然界中的细菌产生对抗生素的抗性。

    巴斯大学和卡迪夫大学的研究人员利用了合成生物学中基因密码子扩展(codon expansion)技术生成了一种新型Cas9核酸酶。自然界的蛋白由20种天然氨基酸组成,而细胞的蛋白合成机制利用64种基因密码子来完成蛋白合成过程。基因密码自扩展技术将特定密码子与非天然氨基酸配对,让细胞在合成蛋白时在特定位点加入非天然氨基酸,从而赋予蛋白新的功能。

    在这项研究中,研究人员将原本编码中止信号的“UAG”密码子与一种名为BOC的非天然氨基酸配对,他们同时在编码Cas9蛋白的基因序列中引入UAG密码子。这导致这种新型Cas9蛋白的合成时需要环境中存在BOC氨基酸,如果BOC氨基酸不存在,那么Cas9蛋白就无法合成,CRISPR/Cas9基因编辑系统就没有活性。而在环境中加入BOC氨基酸则会导致Cas9蛋白的合成,激发基因编辑系统的活性。

    利用体外细胞培养模型和转基因小鼠模型,研究人员证明了这种新型CRISPR/Cas9基因编辑系统只在BOC非天然氨基酸存在的情况下才会表现出基因编辑活性。这种调控系统的优势在于它可以中止Cas9蛋白的产生,从而在不需要基因编辑的情况下完全抑制Cas9核酸酶的活性。而且BOC氨基酸是一种赖氨酸的衍生物,它无毒、丰富、成本低、而且不会对环境产生不良影响。

    “从生物医药到食品安全,基因编辑在生命科学的多个领域中具有巨大的潜力,”文章的负责人之一,卡迪夫大学的蔡羽轩博士说:“BOC提供了一种前景看好的调控基因编辑的方式。我们将继续努力完善这一创新基因编辑系统。”

  • 原文来源:http://news.bioon.com/article/6724506.html
相关报告
  • 《动物所开发出新型TnpB微型基因编辑工具》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-07-06
    •     CRISPR-Cas技术促进生物医学研究。除了广泛使用的Cas9系统之外,其他CRISPR亚型也不断被发现并应用于基因编辑,例如能够装载进AAV病毒的SaCas9(1053 aa)以及更小的微型CRISPR-Cas系统Cas12f(400~550 aa)。已发表的工作重建了CRISPR-Cas系统的起源,发现了原核转座子编码的IscB和TnpB蛋白分别是Cas9与Cas12核酸酶的祖先。这些祖先蛋白尺寸较小,但是否具备核酸酶活性缺乏证据;直到2021年,IscB和TnpB被发现在非编码RNA     (omegaRNA或reRNA)引导下切割双链DNA,证实了其与CRISPR-Cas系统相似的工作机制。TnpB由IS200/IS605等原核转座子家族编码,并被推测参与转座子的扩张。TnpB的分布非常广泛,在目前已知的基因组存在超过百万的拷贝;而此前研究只发现了一种在人类细胞中具有活性的TnpB核酸酶(ISDra2),且效率不高;因此,TnpB这一有潜力作为微型编辑工具的多样性宝库急需系统性的挖掘和研究。同时,由于可能推动转座子扩张,TnpB靶向切割DNA所依赖的关键元件(如reRNA)与转座子或存在关联,因而可以基于转座子信息进行预测,这将为工具的开发提供便利。     6月29日,中国科学院动物研究所/北京干细胞与再生医学研究院研究员王皓毅、博士项光海和动物所研究员张勇团队合作,在《自然-生物技术》(Nature Biotechnology)上,在线发表了题为Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors的研究论文。《自然-生物技术》同时发表了Research Briefing文章,对该成果进行总结和展望(Hypercompact genome editors are discovered by mining a transposon family)。该研究创新性地建立了对TnpB相关靶向基因编辑系统的大规模挖掘方法,并首次对多样性极其丰富的TnpB核酸酶进行了大规模挖掘,从而鉴定到33个在原核系统具有靶向编辑活性的TnpB蛋白,其中5个在真核系统具有活性。     研究对ISfinder原核转座子数据库中IS605编码的TnpB蛋白进行了全面的分析和挖掘,从64个候选项中鉴定出25种在大肠杆菌中活跃的系统,其中3种在人类细胞中具有基因编辑活性。该工作对功能数据的进一步分析揭示了TnpB蛋白相关的reRNA骨架与IS200/IS605转座子的RE序列具有完全重叠的3’末端,而TAM序列则与转座子上游的插入位点序列相同。研究表明,在TnpB系统中,与RNA介导的编辑器相关的三大要素(核酸酶、gRNA骨架和TAM序列)均可通过生物信息分析准确预测,这为大规模筛选高活性TnpB核酸酶奠定了基础。这一发现同时进一步确定了TnpB在IS605中的功能,即作为归巢核酸酶切割转座之后的原位点,从而诱导重组修复实现转座子的拷贝数扩增。 进一步,该团队从4个方面对TnpB相关的reRNA骨架进行了分析。结果表明:reRNA骨架在120-300nt的长度范围内均能够有效发挥功能,而120-140nt的reRNA骨架活性最强;reRNA骨架在3’末端的碱基对其功能有重要影响,单一碱基的突变即会显著降低编辑活性;靶向序列的长度在16-20nt为最佳;靠近TAM端的12nt是TnpB编辑器的核心序列。研究进一步整合分析了影响TnpB编辑器活性的潜在因素,发现了来自细菌的、由多拷贝转座子编码的、具有完整蛋白结构域和保守氨基酸的TnpB编辑器更为活跃。     该团队基于上述研究,建立了大规模挖掘全新TnpB基因编辑器的方法(如图),对部分未经转座子注释的原核基因组进行了从头注释和功能预测,并直接在人类细胞系中筛选获得了新的微型高活性TnpB编辑器ISAam1(369 aa)和ISYmu1(382 aa)。与其他微型Cas蛋白的平行比较发现,ISAam1和ISYmu1的活性与SaCas9相当,显著高于数种已报道的Cas12f蛋白及其变体。     综上,该研究建立了适用于TnpB编辑器的大规模筛选体系,进一步证明了TnpB在转座子扩张中的功能,并对这一类编辑器进行了系统的功能解析,从而获得了目前最小的具备原创知识产权的微型基因编辑器。考虑到体内基因治疗和细胞治疗经常因Cas蛋白过大而递送受限,这一成果将推动相关方面的研究和临床应用。     王皓毅致力于新型基因编辑工具的开发及CAR-T细胞治疗研究;张勇致力于转座子等机制介导的新重复基因的起源和进化研究。两个团队的合作推动了对TnpB的挖掘。研究工作得到科学技术部、中国科学院战略性先导科技专项、农业农村部和国家自然科学基金委员会等的支持。
  • 《Nucleic Acids Res:发现两种较小的新型Cas9核酸酶,有望更容易地进行基因组编辑》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-14
    • 在一项新的研究中,来自俄罗斯科学院、俄罗斯国家研究中心分子遗传学研究所和斯科尔科沃科学技术研究院等研究机构的研究人员描述了两种新的紧凑的Cas9核酸酶,即CRISPR-Cas系统具有切割活性的组分,这将有可能扩大Cas9工具箱在基因组编辑中的应用。这两种Cas9核酸酶中的一种被证实可以在人类细胞中发挥作用,因而可用于生物医学应用。相关研究结果发表在2020年12月2日的Nucleic Acids Research期刊上,论文标题为“PpCas9 from Pasteurella pneumotropica — a compact Type II-C Cas9 ortholog active in human cells”。论文通讯作者为俄罗斯国家研究中心分子遗传学研究所的Konstantin Severinov博士。 CRISPR-Cas是借用细菌的基因组编辑技术,它依赖于Cas核酸酶;这些酶在CRISPR RNA的引导下,可以降解目标基因序列---它们是“基因剪刀”中的刀片。在研究应用中,最受欢迎的Cas9核酸酶是酿脓链球菌(Streptococcus pyogenes)Cas9,即II-A型SpCas9。它的效率很高,而且相对简单,这是因为一个较大的蛋白既能结合crRNA,又能切割DNA;它还需要一个短的PAM序列---一串位于在靶位点两端的核苷酸,以便SpCas9用来定位和“读取”它。 但是SpCas9是一个较大的蛋白,当人们想使用腺相关病毒(AAV)颗粒作为载体将这种“基因剪刀”递送到细胞中时,这就会产生问题。理想情况下,人们希望将编码这种Cas蛋白的基因和向导RNA(gRNA)序列都装入一种病毒颗粒中,而这种尺寸限制需要较短的Cas9种类。然而,那些较短的核酸酶往往需要更长、更复杂的PAM,因此科学家们面临着蛋白大小和靶标选择之间的权衡。 在这篇论文中,最近通过斯科尔科沃科学技术研究院博士答辩的Iana Fedorova以及Severinov实验室研究员Aleksandra Vasileva及其同事们描述了两种新的小型Cas9核酸酶:一种来自Defluviimonas sp.20V17(一种生活在热液喷口的细菌),即DfCas9,另一种来自侵肺巴斯德菌(Pasteurella pneumotropica,一种在啮齿动物和其他哺乳动物中发现的常见细菌),即PpCas9。这两种核酸酶恰好对AAV载体来说足够小,并且具有相对较短的PAM,对于Cas9核酸酶来说,这是“两全其美”的选择。 这两种新的Cas9核酸酶与II-C型CRISPR-Cas系统有关,与SpCas9相比,通常表现为更小的Cas9效应物。这两种核酸酶采用了类似于其他Cas9蛋白的保守的双叶结构,但也有独特的特点:它们缺乏几个插入子结构域,并且有一个较小的Wedge结构域(负责与单向导RNA支架相互作用的结构域,因而更加紧凑。 Fedorova说,“事实上,II-C型Cas9效应物往往需要较长的PAM序列,但这只是基于迄今描述的有限数量的II-C型Cas9效应物的观察。例如,最近发现的来自耳葡萄球菌(Staphylococcus auricularis)的Cas9(SauriCas9),与PpCas9类似,需要短的PAM(5'-NNGG-3')。很可能很快就会发现更多需要短PAM的II-C型Cas9酶。这些具有不同PAM要求的小型Cas9蛋白扩大了真核和原核基因组中潜在的可编辑DNA靶点的数量。” 体外研究和在细菌中的实验表明,这两种Cas9核酸酶能高效地切割DNA,而且PpCas9核酸酶在人体细胞中也很活跃。这些结果也发现它们与其他已被证明在真核细胞中起作用的Cas9核酸酶-- Nme1Cas9和Nme2Cas9---非常相似。虽然还需要开展更多的研究来确定这两种Cas9核酸酶的效率,但是这些研究人员认为它们可能为微生物工程和生物医学基因组编辑中使用的更传统的核酸酶提供了一种可行的替代物。 Fedorova指出,对PpCas9脱靶编辑(非预期修饰)的初步研究表明,这种酶具有合理的特异性。但要证实PpCas9的特异性足以被视为一种基因组编辑工具,还需要使用更复杂的方法进行额外的研究。 她补充道,“此外,看起来PpCas9在靶向细胞中的不同基因方面表现出选择性。这可能会减少PpCas9可能的基因组靶点的范围,这种偏好性是一个值得进一步研究的课题。”