《发酵法高产葡萄糖酸企业获得美国绿色化学挑战奖》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2020-04-08
  • 近日,美国化学学会(ACS)颁发了2019年绿色化学挑战奖。这一奖项的前身是美国总统绿色化学挑战奖(Presidential Green Chemistry Challenge Award,PGCCA),是绿色化学领域的国家级奖项,每年由环保署(EPA)。2018年以后,特朗普政府不再继续评选和资助这一奖项,美国化学学会绿色化学研究所(GCI)宣布设立一个绿色化学挑战奖,以延续这项有意义的评奖工作。
    2019年的绿色化学挑战奖共颁发4像,分别是绿色合成路线奖、绿色反应条件奖、小企业奖和学术奖。其中,美国的创新企业Kalion公司因其在发酵法高产葡萄糖酸方面的工作获得了小企业奖。
    葡萄糖酸具有多种用途,可以用作蛋白凝固剂和食品防腐剂,其钙盐、亚铁盐、铋盐及其他盐类已泛用于化学治疗,其金属络合物在碱性体系中广泛用作金属离子的掩蔽剂。Kalion公司与麻省理工学院合作,正在推进首个微生物发酵生产葡萄糖酸工艺的商业化,开发可降解、无毒、糖衍生的产品,以替代传统的环境污染化学品。Kalion最初将其用作水处理厂的缓蚀剂。研发人员在大肠杆菌中表达来自不同生物体的三种酶:肌醇肌醇-1-磷酸合酶(INO1)、肌醇肌醇加氧(MIOX)和糖醛酸脱氢酶(UDH),建立了全新的代谢途径,获得葡糖二酸,产率接近100%。

相关报告
  • 《研究开发出发酵产物新型高效绿色转化工艺》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-06
    • 过去几十年,传统制造业在将资源转变为产品的过程中,消耗了大量有限资源,并造成严重的环境污染,绿色制造继而成为21世纪可持续发展的重要话题。生物发酵作为绿色制造的重要一环,经过20多年的发展,其产品质量、技术创新能力和资源综合利用水平均得到全面提高,发展重点也由过去注重量的增加转变为追求质的提升、效益的提高以及全方位绿色生产的推行。 目前,我国生物发酵产业在下游加工核心技术水平上与国外仍具有较大差距。而发酵产物的下游加工过程先进与否直接关系到发酵产业的经济效益,关系到整个生物技术产业的兴衰。在发酵产品的生产过程中,产品从水中分离及精制过程所需费用占总成本的60-90%;同时分离纯化过程操作复杂、使用了有毒有机溶剂,违背了绿色化工的初衷,且大大提高了衍生产品的成本,降低了其市场竞争力,这一点在大宗化学品的合成中表现尤为突出。此外,随着生物技术产业规模的扩大,废水污染问题越来越突出。发酵废水水质特点是“两高”,即:高有机物浓度和高悬浮物浓度。直接排放将对环境造成巨大危害,而常规处理方法成本高,企业负担大。因此,研发更加绿色的下游加工及水处理工艺已成为发酵工业发展的新趋势。 针对发酵产物分离精制加工成本高的问题,中国科学院青岛生物能源与过程研究所生物基材料组群冯德鑫研究组提出发酵产品水相原位转化技术。区别于传统分离精制过程的最大特点是原位转化不需要对发酵产物进行分离提纯直接进行衍生化制备得到高附加值化学品。该研究组通过合成多种固体酸复合催化剂替代传统高污质子酸催化剂,将发酵液中单糖、酮、长链羧酸等生物基产品原位转化为呋喃类化合物、呋咱类化合物和生物柴油等,原料转化率均可达到90%以上,从而实现水相条件下高效绿色转化。相关成果已申请专利10篇,发表论文5篇。 针对发酵废水后续处理,梁凤兵等研究人员围绕绿色、高效、无害化废水处理,开展了环保技术研究,旨在提供系统的发酵废水处理节能环保新途径,建立“近零污染发酵废水无害化处理回用系统”。针对废水中有机污染物,设计研发了TiO2基复合催化剂,建立了光催化氧化工艺并申请专利1项;通过新型Fenton 氧化催化剂研发,将反应速率提升到传统方法的3倍,COD去除率提升到传统方法的1.4倍以上,并通过非均相Fenton 氧化催化剂研发,实现了催化剂回用,解决了传统Fenton 氧化造成铁盐污染的产业应用瓶颈问题,已申请专利3项,授权1项;通过筛选、诱变得到耐酸性高效降解菌,处理废水酸度可达到pH=1,已申请专利1项。发酵废水经集成处理后,水资源回用率达到60%以上。 上述研究获得了国家自然科学基金、山东省重点研发计划等的支持。
  • 《“细胞工厂”有望为生物燃料打开一条绿色通道》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-31
    • 本月,诺和诺德基金会生物可持续性研究中心与美国耶鲁大学在《自然—通讯》发布的一项研究表明,甘蔗在进行乙醇发酵时,淀粉乳杆菌能产生大量喂养酵母菌的乙醛,发酵产量预计可提高3%。研究人员建议,关注微生物群落的多样性,对益生菌和有害细菌进行取舍,可以提高发酵的总产量和成本。 在中国科学院微生物研究所研究员张延平看来,微生物细胞工厂是生物炼制的核心,利用代谢工程与合成生物学技术创建高效的微生物细胞工厂,已经展现出良好的应用前景和巨大的市场潜力。 不过,她在接受《中国科学报》采访时坦言,“虽然高效利用微生物可以提高生物燃料产量,但由于生产成本高及补贴等优惠政策的变化,很多企业对技术研发持续投入的热情并不高。” 细胞工厂前景凸显 “由于化石能源具有不可再生性及不合理使用会造成环境污染等特性,各国都在积极寻找可替代资源,其中生物质最具潜力。”中国科学院过程工程研究所研究员王岚说,“生物质在地球上储量巨大,可以通过化学、生物等方法转化为燃料,这种生物燃料清洁无污染,在可再生能源中占据重要地位。” 据她介绍,生物燃料主要分为醇类燃料、发电、柴油和成型燃料四大类。醇类燃料中,燃料乙醇是最具代表性的生物质产品。 在《自然—通讯》发表的这项研究中,研究人员仔细研究了甘蔗在进行乙醇发酵时,酵母菌和其他细菌的相互作用,并对微生物群落结构的所有可能组合进行了重构,这涵盖了工业生产中约80%的微生物群落多样性,其中淀粉乳杆菌特别值得关注。 “这种细菌几乎可充当益生菌,阻止有害细菌参与发酵过程。它以一种和酵母几乎共生的方式生长,这对工业生产十分有益。”曾在诺和诺德生物可持续性研究中心攻读博士学位的马萨·利诺说。 近年来,张延平将目光转向了燃料丁醇。“由于燃烧热值和腐蚀性问题,燃料乙醇在汽油中添加量超过15%时,必须添加腐蚀抑制剂或对发动机进行改造。我国现行标准是乙醇汽油中乙醇含量为10%左右。相比而言,丁醇在性能上与汽油更为接近,燃料丁醇可以100%用作车用燃油。” 为了获得高产丁醇细胞工厂,张延平团队以大宗有机溶剂和潜在生物燃料——正丁醇为目标产品,以大肠杆菌为底盘细胞,创建全染色体编辑的丁醇细胞工厂。经过这种策略获得的丁醇高产菌株可以达到产丁醇大肠杆菌最高水平,葡萄糖的得率也达到理论最大值的83%,超越了天然产丁醇梭菌。 “该菌株生产丁醇不需要添加任何抗生素和诱导剂,具有工业化生产应用的潜力,但由于原料成本高,产业化进程仍然相对缓慢。”张延平表示。为此,她们进一步开发了同步高效代谢葡萄糖和木糖生产丁醇合成菌群,为进一步开发二代纤维素丁醇奠定了基础。 改造微生物并非易事 “微生物菌种是制造生物燃料的核心,在漫长的进化过程中,微生物形成了非常精细的调控系统,想要改造它们并非易事。”张延平表示。 她告诉记者,微生物利用秸秆等生物质为原料进行生物转化,需要对原料进行预处理、水解等,转化过程可能会产生很多杂质,影响微生物的生长和代谢;转化得到的混合糖如果不能被同时利用,就会导致浪费,提高成本;如果不能有效代谢,又会产生高营养的废水。 “因此,要想将秸秆等木质纤维素原料转化成所需的目标产品,就需要将微生物的所有功能集成在一起,单靠某一种微生物是很难办到的。”张延平团队为此也提出了一些新的技术理念,如合成微生物组,将分工合作的不同微生物结合在一起,共同完成一项工作。 作为生物质炼制工程北京市重点实验室副主任,王岚表示,首先,确定合适的酶靶点和代谢途径进行修饰或替换并不容易,某些基因的插入或删除可能会影响菌株其他基因的表达。其次,与自然进化的菌株相比,理性改造后的菌株可能还需要应对菌株退化等问题。 但王岚指出,生物燃料的商业化不可避免地需要人造微生物,其性状现已优于野生型和某些工程菌株,能够改善某些生物燃料的生产经济性。将遗传和代谢工程与合成生物学和系统生物学相结合,是建立生产生物燃料的细胞工厂的关键。 张延平表示,在生物燃料生产过程中对微生物进行改造,引入外源基因是必不可少的,但微生物在形成最终产品前会被分离,不会进入产品,因此产品纯度高且安全。“在菌株改造和生物燃料生产过程中还要注意尽量减少使用抗生素等可能对环境产生不利影响的物质。” 经济性仍是挑战 多年来,王岚团队不断尝试将技术与市场接轨,她发现,在整个过程中,企业最关心的就是成本和利润。“我国在利用生物质转化醇类燃料领域已达到世界先进水平,拥有具有自主知识产权的生物转化乙醇及高附加值副产品技术,目前存在的主要问题是工程性和经济性。” 张延平表示,目前我国燃料乙醇主要原料仍是玉米和甘蔗等,随着玉米供需结构的改变,未来以粮食为原料的燃料乙醇产业发展存在不确定性,因此,我国燃料乙醇产业正逐步从淀粉和糖类乙醇,向2代纤维素燃料乙醇转换。“一方面原料来源更广,另一方面也维护了粮食安全”。 但她同时指出,我国2代纤维素燃料乙醇转换技术与国外相比还存在一定差距,面临原料收集难、生产成本高、受国际石油价格波动影响大等问题。 为进一步降低生产成本,王岚在研究中发现,在生物燃料生产过程中融合化学催化和生物转化,可以缩短反应周期,提高效率。例如采用廉价的化学氧化剂复配于纤维素酶中进行协同降解,有望同时降低底物氧化的用酶成本。 “随着基因工程和代谢工程的发展,通过人工筛选、诱变、驯化和改造,增加微生物的功能、提高代谢能力,进而提高产物的质量和产量。”王岚补充道。 激发内生动力 为推动生物燃料市场化,国家出台了一系列利好措施。《完善生物质发电项目建设运行的实施方案》就明确指出,在现有中央补贴资金的基础上,自2021年起,新纳入补贴范围的项目补贴资金由中央和地方共同承担。 在王岚看来,国家补贴不是推动生物燃料发展的长久之计,还应从根本上调动企业、科研人员、农户等主体的内生动力,根据不同地区的生物质特点设计适合的实施方案,降低其生产成本,从国家推动转为自发推动。 为此,她建议进一步降低生物燃料的市场准入门槛,让更多市场主体参与竞争。此外,政策制定还应适当放宽,过细的政策可能会限制企业的发展和技术的更新。 张延平指出,生物燃料是一项涉及诸多不同研发方向的系统工程,而在此领域中,我国研究主体相对分散,技术集成存在一定难度,大多以科研项目为牵引。 对此,她建议,一方面科研人员要有“十年磨一剑”的研发精神,另一方面要整合现有资源,组建技术研发平台,集中力量攻克生物燃料技术难题。此外,在合作中还应明晰各方权责,加强知识产权保护。 对于生物燃料的发展,王岚建议,要将工程概念引入工艺及设备开发,除了产量外,还应考虑能耗、水耗、投资成本、操作成本、安全性等指标,综合评价工艺;其次要对整个系统进行设计,实现全局最优化。此外,生物燃料行业一定要注重增加产品附加值、延伸产业链,以增加企业利润,未来生物质能梯级综合利用将是主要发展方向。