《国际研究团队揭示小麦如何在抵抗麦瘟病时失去战斗力》

  • 来源专题:转基因技术
  • 编译者: Zhao
  • 发布时间:2017-07-25
  • 包括肯塔基大学(英国)的植物病理学家在内的研究人员发现了小麦瘟病这一毁灭性疾病的一个重要环节。北美洲的小麦没有受到小麦瘟病的影响,但2011年英国的研究人员在肯塔基普林斯顿的英国研究和教育中心的一个研究试验区发现了一个染病的小麦穗头。2016年小麦瘟病流行于孟加拉,今年又一次席卷全球。

    英国植物病理学系进行的研究显示,2011年收集到的病原体与南美小麦瘟病有着不同的遗传特性。这与美国一年生黑麦草和高羊茅的菌株密切相关,表明2011年事件是由禾本科牧草向小麦的“寄主跳跃”引起的。该研究小组还发现,孟加拉国2016年爆发的传染病很可能是通过引进南美真菌菌株而引起的。

    英国植物病理学家Mark Farman与来自日本的合作者一起发现了2011年小麦温病经历了一个关键的基因突变,该基因编码的蛋白质通常被认为是小麦品种具有抗病蛋白的关键。这种突变破坏了“良好”的蛋白质,使真菌通过避免识别来逃避小麦的抗性反应。这些信息将有助于刺激作物品种的发展与更持久的抗病性,”Farman说。

    想了解更多信息,请阅读肯塔基大学新闻。

相关报告
  • 《研究揭示小麦Sr35抗病小体的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •  农作物病虫害是制约农业生产的重要因素,事关粮食安全。抗病蛋白作为最大的植物免疫受体家族可感知病原菌的存在,迅速启动免疫应答和抗病过程,是粮食稳产高产的重要保障。抗病蛋白如何激发免疫和抗病的分子机制研究是植物领域的重要科学问题。此前研究揭示拟南芥ZAR1抗病小体形成可通透钙离子的离子通道,通过钙信号来激发植物免疫应答(DOI:10.1016/j.cell.2021.05.003)。然而,抗病小体在不同植物是否具有保守的共性机制尚不清楚。   清华大学/德国科隆大学柴继杰研究组、德国马克斯·普朗克学会Paul Schulze-Lefert研究组与中国科学院遗传与发育生物学研究所陈宇航研究组,通过结构生物学,植物遗传学和电生理学等多学科交叉合作,阐明了小麦Sr35抗病小体的结构和分子机制。该研究首次揭示小麦抗病受体蛋白Sr35可被小麦杆锈病病原菌的效应因子AvrSr35所识别而激活,并进一步寡聚化形成抗病小体。该研究利用冷冻电镜技术解析了Sr35抗病小体的五聚化结构,结合细胞生物学和电生理学等手段进一步阐明了Sr35抗病受体蛋白配体识别及活化的分子机制。   研究表明,该Sr35抗病小体与之前研究的ZAR1抗病小体在三维结构和离子通道活性具有保守的共性机制,通过形成钙离子通道来激发免疫和抗病过程。该工作为CNL类抗病蛋白的跨物种改造及利用奠定了理论基础,并在农业生产上具有广泛的应用前景。此外,科研人员基于结构研究对感病作物的非功能同源蛋白进行精准改造获得抗病功能,这为抗病农作物精准设计提供新思路。   9月26日,相关研究成果以A wheat resistosome defines common principles of immune receptor channels为题,发表在《自然》(Nature,DOI:10.1038/s41586-022-05231-w)上。研究工作得到中国科学院战略性先导科技专项和科技部等的支持。
  • 《研究揭示环境湿度调控稻瘟病菌致病力和水稻基础抗性的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •       近日,中国水稻研究所水稻有害生物防控技术创新团队利用水稻-稻瘟病菌系统,解析了环境湿度调控稻瘟病发生的机制,研究结果表明环境湿度对稻瘟病菌致病力和水稻抗性均有显著影响,揭示了稻瘟病在高湿环境下更易发生的分子机理,为应对全球气候变化及极端天气频发有效防控稻瘟病提供了重要的理论基础。相关研究成果发表在《植物细胞和环境(Plant, Cell & Environment)》上。   植物病害的发生、发展到流行,取决于病原、寄主植物和环境三要素的综合作用,其中湿度是植物病害流行最关键的环境因素之一。多种病害如稻瘟病、纹枯病、稻曲病、小麦赤霉病及玉米叶斑病等的发生和流行都需要高湿环境,因此解析湿度调控病原菌致病力和作物免疫反应的机理对作物病害的防控具有重要的理论意义和应用价值。由稻瘟病菌引起的稻瘟病是水稻最严重的病害之一。稻瘟病菌的分生孢子借风雨传播到稻株上,吸水后萌发形成重要的侵染结构附着胞,附着胞推动侵染栓进入水稻细胞分化形成侵染菌丝,大约7天后扩展为典型的稻瘟病斑。田间观察发现,稻瘟病的发生与环境湿度显著相关,表现为在高湿度条件下更容易发病与流行,然而,目前湿度调控稻瘟病发生的分子机制尚不清楚。   该研究团队通过研究结果发现,在低湿条件下,稻瘟病菌分生孢子无法形成附着胞,从而丧失侵染水稻的能力;在高湿条件下确保稻瘟病菌附着胞形成后转入低湿环境,水稻乙烯信号途径基因EIN2和EIL1等被稻瘟病菌显著诱导表达,激活乙烯介导的基础抗性,水稻对稻瘟病的抗性增强;而在高湿条件下,稻瘟病菌的分生孢子吸水萌发形成附着胞,与此同时,水稻乙烯信号途径相关基因不能有效被稻瘟病菌诱导表达,水稻基础抗性降低,最终导致水稻更易感稻瘟病。进一步试验发现,施用乙烯利是提高高湿条件下水稻对稻瘟病抗性的有效策略。   该研究得到国家自然科学基金和中国水稻研究所重点研发项目的支持。(通讯员 陈鎏琰)   原文链接:   https://onlinelibrary.wiley.com/doi/10.1111/pce.14452