《植物找寻土壤氮的机制》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-03-28
  • Although not able to actively forage for their food, plants can nevertheless overcome problems relating to nutrient scarcity or varied distribution using a long-distance signaling mechanism. This helps determine their competitive success and productivity. For instance, nitrogen (usually in the form of nitrate) is essential for plant growth, but is often only present as patches in the soil. Nitrogen-starved roots express a mobile plant hormone (CEP) that travels upward to the shoot and eventually triggers compensatory nitrogen uptake by roots in more nitrogen-rich areas. This CEP signal is received by a receptor protein in the leaves, but the molecules involved in the shoot-to-root response signal were unknown.

    Nagoya University research has now revealed that phloem-specific polypeptides (chains of amino acids) are activated in response to the CEP signal, and switch on the expression of a nitrate transporter gene only when nitrate is present in the soil immediately surrounding the root. The study was reported in Nature Plants.

    To identify the gene(s) switched on when the CEP receptor is activated, researchers screened genetic candidates that were highly upregulated following treatment of the model plant Arabidopsis with CEP.

    Two genes matching this description and also regulated by the nitrogen status of the roots were discovered to encode polypeptides that the team named CEPD1 and CEPD2 for CEP downstream 1 and 2, respectively.

    The team showed that these polypeptides accumulated in the roots, although the genes encoding them were expressed only in the shoots. This indicated that the polypeptides act as mobile descending shoot-to-root signals.

    Plants were then grown with their roots separated into two parts, each receiving different levels of nitrogen, to explore the roles of CEPD1 and CEPD2. "Roots exposed to nitrogen-rich medium showed increased expression of a nitrate transporter gene," co-first author Yuri Ohkubo says. "However, mutant plants in which CEPD1 and CEPD2 genes were switched off showed no such activation of the nitrate transporter."

    CEPD polypeptides were detected at similar quantities in both nitrogen-rich and nitrogen-starved roots. However, they only switched on the nitrate transporter gene on the nitrogen-rich side of the plant. "The plant response to a lack of nitrogen therefore depends on the availability of nitrate in the soil surrounding its roots," corresponding author Yoshikatsu Matsubayashi says. "The extent of this nitrate availability ultimately determines if CEPD activates the nitrate transporter gene."

    Such a sophisticated signaling system ensures that plants maximize the efficiency at which they obtain nutrients, and could be exploited to improve fertilizer application and enhance plant productivity.

  • 原文来源:https://www.sciencedaily.com/releases/2017/03/170327100601.htm
相关报告
  • 《武汉植物园揭示了青藏高原湿地土壤中氨氧化微生物的群落构建的调控机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-17
    • 氨氧化过程在氮素的生物地球化学循环中起着至关重要的作用,该过程高度依赖于氨氧化古菌(AOA)和氨氧化细菌(AOB)的活性。尽管已有研究表明AOA和AOB分布广泛,受到环境因子的调控,但对于高海拔湿地生态系统中氨氧化微生物的了解却十分有限。   为了解释氨氧化微生物群落在不同地理距离及环境梯度下的分布模式,武汉植物园湿地生态学学科组的科研人员周雯等在刘贵华研究员和刘文治研究员的指导下,在青藏高原选取了河流、湖泊和沼泽等不同类型的31个自然湿地,分析其氨氧化古菌和氨氧化细菌的群落组成及多样性格局。结果表明,湿地土壤中氨氧化微生物的丰度、群落组成和活性存在较强的异质性,空间距离和环境变化均影响着微生物的群落构建,但环境因素对青藏高原湿地氨氧化微生物群落格局的形成起着主导作用,具体而言,气候条件对AOA群落构建影响更大,而年均温、植物丰富度及土壤条件与AOB的群落组成显著相关。该工作基于青藏高原湿地氨氧化微生物群落的大规模调查,其结果将提高我们对高海拔偏远湿地氮循环过程的认识,并拓展高海拔湿地的管理思路。   研究成果以“Environmental factors, more than spatial distance, explain community structure of soil ammonia-oxidizers in wetlands on the Qinghai-Tibetan Plateau”为题发表于国际学术期刊Microorganisms。研究得到了国家自然科学基金(31971479)、中国科学院青年创新促进会(2017388)和中国科学院重点部署项目(ZDRW-ZS-2017-3-2)的支持。
  • 《昆明植物所等解析聚天冬氨酸促进植物富集重金属镉的机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-01-07
    • 重金属镉(Cd)对生物体而言是一种有毒元素,耕地土壤中的Cd严重威胁着人类健康,去除污染土壤中的Cd是保证土壤长期安全利用的必要措施。植物提取是利用Cd高(超)富集植物将土壤中的Cd吸收和转运至地上部分,通过收获植物材料进行无害化、资源化处理的一种修复土壤Cd污染的绿色技术。除了植物对Cd的吸收和富集能力,植物提取效率与土壤条件也密切相关:一方面,土壤中的有效营养影响植物的生长;另一方面,土壤中Cd的有效性直接决定植物对Cd的吸收效率。因此,可以利用一些土壤改良剂提高土壤中矿质元素或重金属的生物有效性来强化植物提取效率。 聚天冬氨酸(PASP)是一种可完全降解的天然聚合物,在农业和环境领域有广泛的应用。研究发现PASP能有效强化植物对土壤中重金属的提取效率,但前期普遍认为PASP通过螯合作用直接活化了土壤中的重金属或营养元素,而忽略了PASP与其他土壤因子(特别是土壤微生物)的相互作用是否会对植物富集重金属产生影响。为了从相关机制中进一步发掘强化植物提取Cd效率的方法,中国科学院昆明植物研究所和云南师范大学研究人员以Cd高富集植物鬼针草(Bidens pilosa L.)为研究对象,对以上问题展开了研究。 研究人员发现土壤添加3g kg-1和6g kg-1的PASP不仅显著(P < 0.05)增加了鬼针草的生物量,也显著(P < 0.05)促进了鬼针草对Cd的吸收(图1),最终使得鬼针草对Cd的提取效率(地上部分总Cd富集量)分别提高了46.4%和76.4%。对植物根际土壤的元素含量分析表明PAPS处理明显改变了(P < 0.05)土壤元素的有效性,从而有效促进了植物对Cd和营养元素的摄入。除了PASP对元素的直接螯合作用,该研究发现PAPS处理使植物根际募集了多种植物促生菌(图2),这些植物促生菌能通过多种机制促进Cd胁迫下鬼针草的生长和活力,同时一些植物促生菌也能通过分泌有机酸、铁载体等物质间接活化土壤中Cd和营养元素。其中,一些具有解钾(K)功能的植物促生菌可能和PASP一起使得土壤有效K含量增加3.7~21.7倍,除了作为植物营养,有效K的增加可能也对植物富集Cd具有重要的调节作用。此外,植物生理和代谢组分析发现鬼针草叶片中抗氧化酶、氨基酸、有机酸和脂类参与的多种解毒过程被显著(P < 0.05)诱导,这是鬼针草在Cd摄入显著增加的情况下维持生长的内在基础。 以上结果表明PASA通过重塑植物根际环境(特别是微生物群落组成)和调节植物代谢过程来促进鬼针草的生长和对Cd的富集。该研究促进了对土壤螯合剂强化植物提取效率的机制的认识,为螯合剂和植物促生菌联合强化植物提取效率提供了理论指导。研究结果以Polyaspartic acid enhances the Cd phytoextraction efficiency of Bidens pilosa by remolding the rhizospheric environment and reprogramming plant metabolism为题发表在Chemosphere上。相关研究工作得到中国科学院青年创新促进会和云南省基础研究计划重点项目等的支持。