序列特异性 DNA 结合蛋白(DBPs)在生物学和生物技术领域发挥关键作用,人们对设计具有新特异性或改变后特异性的 DBPs 用于基因组编辑等应用抱有浓厚兴趣。尽管通过筛选方法对天然 DBPs 进行重编程已取得一定成功,但设计能识别任意目标位点的新型 DBPs 仍面临重大挑战。
本文介绍了一种计算设计方法,可生成能通过与 DNA 大沟中碱基相互作用来识别短特异性目标序列的小型 DBPs。利用该方法,研究人员针对 5 个不同的 DNA 靶点设计出结合剂,其亲和力达到中纳摩尔至高三纳摩尔水平。单个结合模块在多达 6 个碱基对位置上的特异性与计算模型高度匹配,且通过 RFdiffusion 将结合剂沿 DNA 双螺旋刚性定位,可实现更高阶的特异性。
经测定,设计的 DBP - 靶点复合物的晶体结构与设计模型高度一致,且这些设计的 DBPs 在大肠杆菌和哺乳动物细胞中均能发挥功能,可抑制和激活邻近基因的转录。此外,研究还通过酵母展示细胞分选进行 DBP 的生成与筛选,通过 X 射线共晶学和 DBP 足迹分析验证设计的有效性,对 DBP 特异性进行评估与优化,并证实设计的 DBPs 能在活细胞中调节转录。
该方法为生成小型且易于递送的序列特异性 DBPs 提供了途径,可用于基因调控和编辑,在合成生物学及其他需要序列特异性 DNA 识别的领域具有广泛应用前景。
序列特异性 DNA 结合蛋白(DBPs)在生物学和生物技术领域发挥关键作用,人们对设计具有新特异性或改变后特异性的 DBPs 用于基因组编辑等应用抱有浓厚兴趣。尽管通过筛选方法对天然 DBPs 进行重编程已取得一定成功,但设计能识别任意目标位点的新型 DBPs 仍面临重大挑战。
本文介绍了一种计算设计方法,可生成能通过与 DNA 大沟中碱基相互作用来识别短特异性目标序列的小型 DBPs。利用该方法,研究人员针对 5 个不同的 DNA 靶点设计出结合剂,其亲和力达到中纳摩尔至高三纳摩尔水平。单个结合模块在多达 6 个碱基对位置上的特异性与计算模型高度匹配,且通过 RFdiffusion 将结合剂沿 DNA 双螺旋刚性定位,可实现更高阶的特异性。
经测定,设计的 DBP - 靶点复合物的晶体结构与设计模型高度一致,且这些设计的 DBPs 在大肠杆菌和哺乳动物细胞中均能发挥功能,可抑制和激活邻近基因的转录。此外,研究还通过酵母展示细胞分选进行 DBP 的生成与筛选,通过 X 射线共晶学和 DBP 足迹分析验证设计的有效性,对 DBP 特异性进行评估与优化,并证实设计的 DBPs 能在活细胞中调节转录。
该方法为生成小型且易于递送的序列特异性 DBPs 提供了途径,可用于基因调控和编辑,在合成生物学及其他需要序列特异性 DNA 识别的领域具有广泛应用前景。