《全息拉曼显微镜》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-12-02
  • 拉曼光谱技术被广泛应用于分析科学中,通过分子的光谱信息识别不同种类的分子。在生物学中,拉曼光谱技术也是一项非常重要的技术,无需标记即可区分不同的细胞和组织。然而,自发拉曼散射强度非常弱,比荧光信号还要弱十多个数量级。因此在一般情况下,在诸如活细胞成像等情况中往往优先选择荧光显微镜。幸运的是,拉曼散射可以在金属表面及金属纳米间隙中得到显著增强,这种表面增强拉曼散射(SERS)的强度甚至超过荧光信号。纳米颗粒表面增强拉曼散射探针不会破坏分子固有的特异性,具有广阔的生物传感应用前景。然而,表面增强拉曼散射探针的有效性主要取决于颗粒的大小、稳定性和亮度,目前为止,表面增强拉曼散射探针成像几乎没有实际应用。
    近日,西班牙光子科学研究所(ICFO)的研究人员Matz Liebel和Nicolas Pazos-Perez(就职于加泰罗尼亚高等研究院(ICREA)Niek van Hulst教授课题组),以及Ramon Alvarez-Puebla(罗维拉-威尔吉利大学),提出了“全息拉曼显微镜”的概念。首先,研究人员将小型纳米粒子组装成等离激元纳米粒子超团簇,在受限的超团簇内产生高强度电场。这种超明亮的SERS纳米探针仅需要使用非常低的近红外照明,从而将对活细胞的可能造成的光损伤降低到最低,并使得宽场拉曼成像成为可能。其次,研究人员采用了Liebel及其团队发表于Science Advances上的非相干全息显微镜方案,利用明亮的SERS探针实现了3D全息成像。值得注意的是,此次利用非相干拉曼散射实现了“自干涉”,首次实现了拉曼全息。

    图 1 活细胞中单个SERS粒子跟踪
    Liebel和Pazos-Perez展示了宽场拉曼图像的傅里叶变换拉曼光谱,能够在单次发射中实现单粒子三维空间定位。随后,研究人员进一步实现了三维空间中活细胞内的单个SERS纳米粒子的识别和跟踪。
    此项研究成果发表在Nature Nanotechnology上。未来,单次拉曼全息照相的光谱多路复用3D浓度映射有望在活细胞和组织研究、防伪技术等多个场景中得到应用。

相关报告
  • 《通过共焦拉曼显微镜原位定量测定油包水乳液体系中β-胡萝卜素的分配》

    • 来源专题:食物与营养
    • 编译者:niexiuping
    • 发布时间:2017-04-30
    • 共焦拉曼显微镜能够量化油滴中的β-胡萝卜素浓度,并确定油包水乳液体系中β-胡萝卜素的分配特性。 结果通过常规方法验证,其中包括从总乳液中分离出β-胡萝卜素的溶剂萃取以及通过离心分离的水相,并通过吸收分光光度法进行定量。共焦拉曼显微镜还可以获得β-胡萝卜素在乳液中的定位。 从拉曼图像中,观察到由乳清蛋白分离物(WPI)稳定的棕榈油水包油乳液的水相和油相之间的β-胡萝卜素分配。 增加固定总成分(10%棕榈油精:2%WPI)的乳液(0.1至0.3 g / kg乳液)中β-胡萝卜素的浓度降低了油滴中β-胡萝卜素的浓度。 共焦拉曼显微镜是一种功能强大的工具,用于原位分析异种系统(如乳液)中的组分。
  • 《阿秒电子显微镜研究取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-11-13
    • 电子显微镜为人们提供了深入观察物质微小细节的途径,例如材料的原子排列,蛋白质的结构,以及病毒粒子的形状等。然而,自然界中大多数材料并非静止,而是彼此之间相互作用,时刻都在运动、重组。最常见的例子之一就是光与物质的相互作用,这种相互作用在植物、光学元件、太阳能电池、显示器以及激光中都普遍存在。这种相互作用由围绕光场周期移动的电子定义,发生在飞秒(十的负十五次方秒)甚至阿秒(十的负十八次方秒)量级上。尽管超快电子显微镜技术可以观测飞秒量级上某些过程,然而直到近日,电子显微镜技术仍未实现阿秒量级上光与物质相互作用的观测。 近日,来自康斯坦茨大学和德国慕尼黑大学的一组科学家们成功将透射电子显微镜和连续激光器相结合,制造出一台阿秒电子显微镜的原型(Attosecond Transmission Electron Microscope, A-TEM)。此项研究结果发表在最新一期的Science Advances上。 图1 (左)阿秒透射电子显微镜;(右)连续激光(红色)与电子束(蓝色)在薄膜处发生相互作用,激光将电子调制成阿秒脉冲序列 调制电子束 “光学、纳米光子学以及超材料学中的基本现象都在阿秒量级上发生,比光波的一个周期还短。”本文的主要作者、康斯坦茨大学物理系光和物质课题组负责人的Peter Baum教授说。“因此,要想对光和物质之间的超快相互作用进行成像,时间分辨率需要低于光波一个振荡周期。”传统的透射电子显微镜使用连续电子束照射标本,进而成像。而Baum的团队则使用连续激光器的快速振荡对显微镜内的电子束进行调制,用电子束脉冲成像。 超短电子脉冲 这项研究的核心技术是一张薄膜,研究人员用它来破坏激光束光学周期的对称性,使得显微镜中的电子历经一系列快速加速、减速过程。“最终,电子显微镜中的电子束被转换成一系列超短电子脉冲,脉冲时间短于激光束光学周期的一半。” 本文的第一作者、博士后研究人员Andrey Ryabov说。从激光源中分束出的另一束激光,用于激发样品,使之发生光学变化;超短电子脉冲随后探测样品和样品对激光的响应。通过扫描两束激光之间的时间差,研究人员就能够以阿秒分辨率,捕获标本内部电磁动态变化的连续镜头。 技术修改简单,意义重大 “这项技术的主要优点是,可直接利用电子显微镜内已有的连续电子束,而不必增加新的电子源。这意味着每秒可以有100万倍以上的电子,基本上是光源的最大亮度。这样的优点对任何实际应用都是非常关键的。”Ryabov继续说道。另一个优点是所需的技术修改相当简单,不需要重新配置电子枪。 有了这项技术,在整个时空成像技术范围内实现阿秒分辨率将成为可能。比如时间分辨全息术、波形电子显微镜以及激光辅助电子光谱学等。从长远来看,阿秒电子显微镜将有助于揭示复杂材料和生物物质中光与物质相互作用的原子机制。