《bioRxiv,6月21日,A path towards SARS-CoV-2 attenuation: metabolic pressure on CTP synthesis rules the virus evolution》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-06-22
  • A path towards SARS-CoV-2 attenuation: metabolic pressure on CTP synthesis rules the virus evolution

    Zhihua Ou, View ORCID ProfileChristos Ouzounis, Daxi Wang, Wanying Sun, Junhua Li, Weijun Chen, Philippe Marliere, View ORCID ProfileAntoine Danchin

    doi: https://doi.org/10.1101/2020.06.20.162933

    Abstract

    Fighting the COVID-19 epidemic summons deep understanding of the way SARS-CoV-2 taps into its host cell metabolic resources. We describe here the singular metabolic background that creates a bottleneck constraining coronaviruses to evolve towards likely attenuation in the long term. Cytidine triphosphate (CTP) is at the crossroad of the biosynthetic processes that allow the virus to multiply. This is because CTP is in demand for three essential steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope and, finally, it is a critical building block of the host transfer RNAs synthesis. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate (UTP) that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. We also highlight and provide a raison d'etre to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP (ddhCTP) as an extremely efficient antiviral nucleotide.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.06.20.162933v1
相关报告
  • 《6月21日_减弱SARS-CoV-2毒性的途径:CTP合成的代谢压力决定了病毒的进化》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-06-23
    • 1.时间:2020年6月21日 2.机构或团队:深圳华大基因、希腊化学过程和能源研究所、中国科学院大学、欧洲合成科学家和工业家联合会(TESSSI)、法国巴黎科钦研究所、香港大学 3.事件概要 深圳华大基因,希腊化学过程和能源研究所,中国科学院大学,欧洲合成科学家和工业家联合会(TESSSI),法国巴黎科钦研究所和香港大学的科研人员在bioRxiv预印本平台发表题为“A path towards SARS-CoV-2 attenuation: metabolic pressure on CTP synthesis rules the virus evolution”的文章。 文章指出,抗击COVID-19疫情,需要深入了解SARS-CoV-2利用宿主细胞代谢资源的方式。研究人员在本文中描述了单一的代谢背景,该背景形成了一个瓶颈来限制冠状病毒向可能的衰减方向发展。三磷酸胞苷(CTP)处于允许病毒繁殖的生物合成过程的十字路口。这是因为CTP需要三个基本步骤,它是病毒基因组的一个组成部分,是合成病毒包膜的胞嘧啶基核苷前体所必需的,最后,它也是合成宿主转移RNA的一个关键组成部分。翻译RNA基因组并进一步转录成用于构建活性病毒拷贝的蛋白质所需的所有转移RNA的CCA 3'端在人类基因组中没有编码。它必须由CTP和ATP重新合成。此外,中间代谢是建立在通过三磷酸尿苷(UTP)合成和回收胞嘧啶基代谢物的强制性步骤上,这限制了CTP的可用性。因此,偶然的复制错误往往会将基因组中的胞嘧啶替换为尿嘧啶,除非重组事件允许序列返回到它的祖先序列。研究人员在病毒蛋白质的功能方面记录了这种情况的一些后果。研究人员还强调并提供了蝰蛇毒素存在的理由,这是一种天然抗病毒免疫酶,可以作为一种高效的抗病毒核苷酸合成3'-脱氧-3',4'-二脱氢-CTP(ddhCTP)。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://www.biorxiv.org/content/10.1101/2020.06.20.162933v1
  • 《bioRxiv,6月21日,Genomic diversity and hotspot mutations in 30,983 SARS-CoV-2 genomes: moving toward a universal vaccine for the "confined virus"?》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-22
    • Genomic diversity and hotspot mutations in 30,983 SARS-CoV-2 genomes: moving toward a universal vaccine for the "confined virus"? Tarek Alouane, Meriem Laamarti, Abdelomunim Essabbar, Mohammed Hakmi, El Mehdi Bouricha, M.W. Chemao-Elfihri, Souad Kartti, Nasma Boumajdi, Houda Bendani, Rokaia Laamarti, Fatima Ghrifi, Loubna Allam, Tarik Aanniz, Mouna Ouadghiri, Naima El Hafidi, Rachid El Jaoudi, Houda Benrahma, Jalil El Attar, Rachid Mentag, Laila Sbabou, Chakib Nejjari, Saaid Amzazi, Lahcen Belyamani, Azeddine Ibrahimi doi: https://doi.org/10.1101/2020.06.20.163188 Abstract The Coronavirus disease 19 (COVID-19) pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. To date, the SARS-CoV-2 virus has infected more than 8 million people worldwide and killed over 5% of them. Efforts are being made all over the world to control the spread of the disease and most importantly to develop a vaccine. Understanding the genetic evolution of the virus, its geographic characteristics and stability is particularly important for developing a universal vaccine covering all circulating strains of SARS-CoV-2 and for predicting its efficacy. In this perspective, we analyzed the sequences of 30,983 complete genomes from 80 countries located in six geographical zones (Africa, Asia, Europe, North & South America, and Oceania) isolated from December 24, 2019 to May 13, 2020, and compared them to the reference genome. Our in-depth analysis revealed the presence of 3,206 variant sites compared to the reference Wuhan-Hu-1 genome, with a distribution that is largely uniform over all continents. Remarkably, a low frequency of recurrent mutations was observed; only 182 mutations (5.67%) had a prevalence greater than 1%. Nevertheless, fourteen hotspot mutations (> 10%) were identified at different locations, seven at the ORF1ab gene (in regions coding for nsp2, nsp3, nsp6, nsp12, nsp13, nsp14 and nsp15), three in the nucleocapsid protein, one in the spike protein, one in orf3a, and one in orf8. Moreover, 35 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human receptor ACE2. These results along with the phylogenetic analysis demonstrate that the virus does not have a significant divergence at the protein level compared to the reference both among and within different geographical areas. Unlike the influenza virus or HIV viruses, the slow rate of mutation of SARS-CoV-2 makes the potential of developing an effective global vaccine very likely. Keywords: SARS-CoV-2, genetic evolution, divergence, hotspot mutations, spike protein.