《中国科学院上海有机所,催化领域Science!》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自材料牛

    【导读】

    众所周知,作为有机化学中最古老的反应之一,由铜介导的交叉偶联反应已经成为构建碳碳(C?C)和C?杂原子键的最有效的策略,且早期的研究主要集中在sp2杂化碳亲电试剂的偶联上。近年来,研究已经扩展到包括sp3杂化碳亲电试剂的中度偶联上。其中,由铜介导或铜催化的炔基化、烷基化、芳基化和胺化方面取得了很大进展,为进一步的官能团修饰提供了一种可替代的方式。同时,使用铜的烷基亲电试剂的交偶联反应已经被广泛应用,但对其中的反应机理的研究还较少,不像后来的钯催化剂那样被很好地理解。

    【成果掠影】

    在此,中国科学院上海有机化学研究所沈其龙研究员和薛小松研究员,美国加州大学伯克利分校John F.Hartwig教授等人(共同通讯作者)提出了一个适当的权衡反应性和稳定性的三氟甲基Cu(I)和Cu(III)复合物可以满足上述要求,以及提供一个机会来研究烷基卤化物的反应机制与Cu(I)形成稳定的Cu(I)产品。在此基础上,作者研究了烷基卤化物与三氟甲基Cu(I)配合物的反应。稳定的[Ph4P]+[Cu(CF3)2]-和[(bpy)Cu(CF3)] (bpy,联吡啶)最初作为Cu(I)配合物,分别代表无配体的“酸”型Cu (I)配合物和中性联吡啶化Cu (I)配合物。这些配合物将使能够探索两种不同类型的Cu (I)配合物的反应性差异和氮配体对氧化加成过程的影响。作者选择α-卤代乙腈XCH2CN作为烷基亲电性,其比其他烷基卤化物更具亲电性,减少了氧化添加到Cu (I)的能垒。此外,由于氰基的吸电子特性,[(ligand)CuIII(CF3)2(CH2CN)]配合物中C?C键形成还原消除的能垒足够高,可以直接观察到产物,并可能分离出来。结合计算和实验研究,对这些反应进行的机理研究表明,阴离子和中性配合物与相同的烷基卤化物发生不同的机理反应。

    相关研究成果2023年9月7日以“Oxidative addition of an alkyl halide to form a stable Cu(III) product”为题发表在Science上。


    【核心创新点】

    1.本文提出了一个适当的权衡反应性和稳定性的三氟甲基Cu(I)和Cu(III)复合物,来研究烷基卤化物的反应机制与Cu(I)形成稳定的Cu(I)产品;

    2.结合计算和实验研究,对这些反应进行的机理研究表明,阴离子和中性配合物与相同的烷基卤化物发生不同的机理反应。

    【成果启示】

    综上所述,本文报道了α-卤代乙腈对离子和中性Cu(I)配合物的氧化加成,机理研究表明离子和中性Cu(I)配合物的氧化加成通过两种不同的途径进行,SN2型取代离子络合物和卤原子转移到中性络合物。同时,铜中间体固有的不稳定性,使得对这一基本步骤的研究很少。因此,本文中以C(sp3)?X键氧化加入Cu (I)的例子,可能有助于开发更有效的铜催化烷基亲电试剂交叉偶联反应

    文献链接:“Oxidative addition of an alkyl halide to form a stable Cu(III) product”(Science,2023,10.1126/science.adg9232)


  • 原文来源:http://www.cailiaoniu.com/254199.html
相关报告
  • 《中国科学院海洋所在光致阴极保护和光催化降解有机污染物领域获新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-04-05
    • 近日,腐蚀领域Top期刊Corrosion Science(JCR 1区,IF:6.355)和材料化学领域Top期刊Journal of Materials Chemistry C(JCR 1区,IF:6.641)发表中国科学院海洋所陈卓元研究组在光致阴极保护和光催化降解有机污染物方面的最新研究成果。 光电化学技术被广泛应用于环境与能源领域研究。光电材料在光电化学反应过程中能够实现光生电子和空穴的有效分离,并分别参与相应的氧化还原反应,这一特殊的光生载流子的转移方式使得光致阴极保护技术孕育而生,其原理是利用太阳能激发光电材料产生光生电子,并转移到耦联金属上为其提供阴极保护。在光致阴极保护过程中,光电材料不会被消耗,同时,光电极的控制合成较为简单,成本较低,因此它是一种有巨大应用潜力、绿色环保的防腐蚀技术。 陈卓元研究组在Corrosion Science期刊报道了一种新颖的TiO2/MgTixOy相异质结薄膜电极,实现了在海洋环境中对304不锈钢的光致阴极保护,并具有很好的稳定性。同时,该研究首次采用扫描开尔文探针技术测量光电极材料的功函数,结果表明,TiO2/MgTixOy光电极较低的表面功函使得其电子逸出更容易,光照下可以产生较高浓度的光生电子,为304不锈钢提供更大的光致阴极保护电流。另外,多相异质结的建立使得TiO2/MgTixOy薄膜电极具有更好的光致阴极保护稳定性。该成果进一步丰富了表征光电极光致阴极保护性能的研究测试手段,并为深入理解光致阴极保护性能和稳定性提供了重要理论依据,得到同行广泛关注。 同时,陈卓元课题组在研究光催化降解有机污染物苯酚方面获得重要研究进展,撰写的研究论文在Journal of Materials Chemistry C刊发并被评选为封面文章。 被污染的淡水及海水中往往含有带苯环的难降解有机污染物,严重危害人类的生存环境。污水处理往往伴随着各种机械、生物、物理和化学过程,非常繁琐。光催化降解技术能有效降解有机污染物,是一种绿色环保的水处理技术。研究团队通过制备多孔ZnO纳米棒(ZnO-NRs)、Ag改性的多孔ZnO纳米棒(ZnO/Ag)和Ag/Ag2O纳米颗粒改性的多孔ZnO纳米棒(ZnO/Ag/Ag2O)光催化剂,并研究它们对苯酚降解过程的影响。与ZnO-NRs和ZnO/Ag相比,制备的ZnO/Ag/Ag2O光催化剂明显提高了光催化降解苯酚的性能。Ag/Ag2O纳米颗粒在光催化降解苯酚反应中起重要作用。对于ZnO-NRs和ZnO/Ag,氢醌是它们光催化降解苯酚过程中的主要中间产物,然而,对于ZnO/Ag/Ag2O,同时出现了中间产物氢醌和对苯醌。本研究深入分析和阐述了苯酚在光催化降解过程中中间产物的产生及变化的原因,揭示了ZnO/Ag/Ag2O加速光催化降解苯酚的机理,对于设计和合成具有高降解性能的光催化剂具有重要理论指导意义。 以上两项成果得到国家自然科学基金面上项目、山东省重点研发计划(公益性科技攻关类)项目、青岛市创新领军人才项目和洛阳船舶材料研究所海洋腐蚀与防护国防科技重点实验室开放基金等项目联合资助。博士研究生冯昌为论文第一作者,陈卓元研究员为论文通讯作者。    论文信息如下:   Chang Feng, Zhuoyuan Chen*, Jiangping Jing, et al., A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection, Corrosion Science, 2020, 166: 108441. (DOI: 10.1016/j.corsci.2020.108441)      Chang Feng, Zhuoyuan Chen*, Jiangping Jing, et al. The photocatalytic phenol degradation mechanism of the Ag-modified ZnO nanorods, Journal of Materials Chemistry C, 2020, 8: 3000-3009. (DOI: 10.1039/C9TC05010H)
  • 《中国科学院金属所陈星秋丨Sci中国母校: 拓扑量子催化: 拓扑狄拉克节线半金属的潜在析氢催化功能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-19
    • 中国科学院金属研究所沈阳材料科学国家研究中心陈星秋研究团队利用节线半金属产生的鼓膜状表面态作为析氢反应的催化平台,提出了拓扑量子催化的新概念,并建议TiSi家族材料作为这种催化剂的潜在候选范本。这一新概念对于新型催化材料的设计具有指导意义。该成果在Science China Materials 2018年第1期作为封面文章报道。 引言 在凝聚态物理和材料科学的前沿领域中,拓扑狄拉克节线半金属因其独特的拓扑能带结构吸引了科研人员的广泛关注。拓扑节线半金属具有体态能带反转导致的稳定闭合环状狄拉克节线,它投影到某些材料的表面会形成闭合的圈,圈内则表现出受拓扑保护的能量色散非常小的鼓膜状拓扑表面态,从而使表面处的费米能级具有极高的电子态密度。目前,催化活性位置的设计一般需要满足在费米能级处具有较高的电子态密度、高载流子输运速率和适当的热力学稳定性。理论上,由于不易被破坏的鼓膜状拓扑表面态的存在,拓扑节线(半)金属天然融合了费米能级高的电子态密度和高载流子输运速率优势,可为其作为潜在的高效催化平台提供坚实基础。 基于这一设想,最近中国科学院金属所陈星秋研究团队提出了拓扑量子催化的新概念,即主要利用固体拓扑材料的表面态作为催化活性平台。基于第一性原理计算和模型分析,他们建议拓扑节线半金属TiSi新型家族材料可作为潜在电化学析氢催化平台。计算结果表明在自旋-轨道耦合效应较弱的TiSi金属间化合物中,由于Ti的dyz和dz2轨道能带反转而导致在布里渊区内的ky=0平面内形成了闭合的狄拉克节线环,用紧束缚模型分析了ky=0和ky=π两个面的瓦尼尔中心的演化,确定了该狄拉克节线环的拓扑非平庸的性质。在与ky=0平面平行的(010)表面出现了二重简并的非平庸拓扑表面态,该表面态穿过费米能级,导致(010)表面出现了高的电子态密度。氢吸附过程计算表明(010)表面氢吸附自由能△G几乎恰好为0,表明氢既不那么强也不那么弱地被(010)表面吸附。因此,该(010)表面既有利于氢离子得到电子被还原,又有利于氢气的析出。同时,拓扑电荷也被揭示参与了析氢反应过程。 根据这个思路,他们提出了TiSi家族材料不仅有希望成为析氢反应的催化剂,更重要的是它指明利用固体材料的拓扑表面态设计新型催化剂的新路线——拓扑量子催化。这一利用拓扑节线材料非平庸表面态作为催化活性位置的思路与以往利用纳米、构筑、缺陷、晶界等调控设计催化剂具有本质不同。 该研究得到了国家自然科学基金和国家相关人才计划的资助。