《中国科学院金属所陈星秋丨Sci中国母校: 拓扑量子催化: 拓扑狄拉克节线半金属的潜在析氢催化功能》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-01-19
  • 中国科学院金属研究所沈阳材料科学国家研究中心陈星秋研究团队利用节线半金属产生的鼓膜状表面态作为析氢反应的催化平台,提出了拓扑量子催化的新概念,并建议TiSi家族材料作为这种催化剂的潜在候选范本。这一新概念对于新型催化材料的设计具有指导意义。该成果在Science China Materials 2018年第1期作为封面文章报道。

    引言

    在凝聚态物理和材料科学的前沿领域中,拓扑狄拉克节线半金属因其独特的拓扑能带结构吸引了科研人员的广泛关注。拓扑节线半金属具有体态能带反转导致的稳定闭合环状狄拉克节线,它投影到某些材料的表面会形成闭合的圈,圈内则表现出受拓扑保护的能量色散非常小的鼓膜状拓扑表面态,从而使表面处的费米能级具有极高的电子态密度。目前,催化活性位置的设计一般需要满足在费米能级处具有较高的电子态密度、高载流子输运速率和适当的热力学稳定性。理论上,由于不易被破坏的鼓膜状拓扑表面态的存在,拓扑节线(半)金属天然融合了费米能级高的电子态密度和高载流子输运速率优势,可为其作为潜在的高效催化平台提供坚实基础。

    基于这一设想,最近中国科学院金属所陈星秋研究团队提出了拓扑量子催化的新概念,即主要利用固体拓扑材料的表面态作为催化活性平台。基于第一性原理计算和模型分析,他们建议拓扑节线半金属TiSi新型家族材料可作为潜在电化学析氢催化平台。计算结果表明在自旋-轨道耦合效应较弱的TiSi金属间化合物中,由于Ti的dyz和dz2轨道能带反转而导致在布里渊区内的ky=0平面内形成了闭合的狄拉克节线环,用紧束缚模型分析了ky=0和ky=π两个面的瓦尼尔中心的演化,确定了该狄拉克节线环的拓扑非平庸的性质。在与ky=0平面平行的(010)表面出现了二重简并的非平庸拓扑表面态,该表面态穿过费米能级,导致(010)表面出现了高的电子态密度。氢吸附过程计算表明(010)表面氢吸附自由能△G几乎恰好为0,表明氢既不那么强也不那么弱地被(010)表面吸附。因此,该(010)表面既有利于氢离子得到电子被还原,又有利于氢气的析出。同时,拓扑电荷也被揭示参与了析氢反应过程。

    根据这个思路,他们提出了TiSi家族材料不仅有希望成为析氢反应的催化剂,更重要的是它指明利用固体材料的拓扑表面态设计新型催化剂的新路线——拓扑量子催化。这一利用拓扑节线材料非平庸表面态作为催化活性位置的思路与以往利用纳米、构筑、缺陷、晶界等调控设计催化剂具有本质不同。

    该研究得到了国家自然科学基金和国家相关人才计划的资助。

相关报告
  • 《中国科学院合肥研究院设计出直接燃料电池催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-24
    • 近期,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部环境与能源纳米材料中心在以有机物5-羟甲基糠醛作为燃料的燃料电池研究中取得新进展,合成了负载在炭黑上的铂与硫化镍纳米颗粒双功能催化剂(PtNiSx/CB),不仅可以催化阳极燃料5-羟甲基糠醛(HMF)氧化为2,5-呋喃二甲酸(FDCA),还能够驱动阴极氧还原反应,实现在输出能量的同时将燃料转变为更高价值的产物。相关研究成果以Sustainable 2,5-furandicarboxylic synthesis by a direct 5-hydroxymethylfurfural fuel cell based on a bifunctional PtNiSx catalyst为题,发表在Chemical Communications上。 FDCA有望在化工生产中取代对苯二甲酸合成聚合物,是一种重要的近市场化工产品,主要通过热催化、光催化、电催化等方式氧化HMF得到。其中,电化学策略可与电化学析氢反应(HER)或电催化有机氢化合成结合,产生额外的高附加值产品,并提高能量转换效率。可持续和更节能的电催化FDCA合成工艺是燃料电池研究中的热点。 燃料电池作为一种可持续的能量转换和存储技术,因其能量转换效率高、环境友好等优点得到广泛研究和发展。燃料电池技术包含两个重要的化学反应——阳极的燃料氧化反应和阴极氧还原反应(ORR),均需要利用高效且价格相对低廉的催化剂以降低反应能垒,进而提高反应动力学。 基于此,研究人员设计出氧还原与有机合成相结合的直接HMF燃料电池(DHMF-FC)形式;采用浸渍、熏硫与煅烧的策略,合成了双功能PtNiSx催化剂。研究发现,铂与硫化镍间存在界面,Pt和NiSx纳米颗粒之间密切的相互作用与界面效应使得该催化剂具有良好的电化学ORR和HMF氧化催化活性。此外,NiSx的引入有利于ORR四电子反应过程的进行,硫元素也可有效防止金属颗粒的团聚。半电池的电化学测试和ICP-AES测试结果显示,PtNiSx/CB具有优异的ORR与OER性能,电化学活性面积(79 m2 gPt-1)高于商业Pt/C(64 m2 gPt-1),且其中铂的负载量(7.60 wt%)低于商业铂碳(20 wt%)。加入HMF后的燃料电池在60℃时,开路电压为0.52 V,放电效率达2.12 mW cm-2,电流密度为6.8 mA cm-2;对放电反应电解液进行液相色谱检测,发现HMF几乎完全转化为FDCA,转化率接近98%,选择性达到100%。该研究有助于设计和发展双功能的燃料电池电催化剂。 研究工作得到国家自然科学基金、安徽省自然科学基金和中国博士后科学基金的支持。
  • 《金属所发现拓扑狄拉克节线量子态诱发表面电声耦合反常增强现象》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-25
    • 中国科学院金属研究所沈阳材料科学国家研究中心材料设计与计算研究部的研究人员及合作者发现了金属铍表面的巨大电声耦合的反常增强是其块体材料中拓扑狄拉克节线量子态诱发的。因为该节线态会导致鼓膜类拓扑表面态,它们在表面费米能级附近局域,增高了态密度,尤其是通过与低频区表面声子的耦合诱发了巨大的电声耦合效应。研究团队也在其它拓扑材料中揭示了类似的效应。相关成果发表于Phys. Rev. Lett. 123, 136802 (2019) 并入选(PRL Editor’s suggestion),做为亮点文章(highlighted article)在PRL网站推荐。 电声相互作用在材料和凝聚态物理中是普遍存在的,也是固体物理量子机制理论中研究最为普遍的内容之一。它通常反映的是固体材料中原子在平衡位置振动对电子结构的影响,因此电声相互作用对材料的许多性质有重要影响。比如,它不但影响材料随温度变化的电子能带结构,导致光电子能谱、拉曼和中子实验中经常观察到的典型扭结或者Kohn异常现象,而且它还会加强金属随温度变化的电阻,增加半导体材料的载流子迁移速率,更会对传统BCS超导的产生起到决定性作用等。因电声相互作用耦合了晶格和自旋自由度或者可调节色心自旋的寿命,在自旋电子学和量子信息领域内也有重要应用。 金属的电声耦合效应通常不会很大,比如块体金属铍的电声耦合效应只有0.24。但铍(0001)表面的电声耦合效应竟然出现反常增强,是其块体的5倍以上。这种反常增强现象自上世纪90年代起就被多种不同实验观测到,迄今为止这一现象的机理未明,并引起了广泛争议。 对于金属铍表面电声耦合机理的研究,最大的困难之一是电声耦合基本参数——伊利艾伯格函数的精确求算。尽管以前的研究在频率区间内积分伊利艾伯格函数得出的电声耦合强度数值与实验相近,但计算结果并不可靠。主要因为以前理论获得的相应频率区间的计算结果与实验结果存在严重偏差,同时也无法给出与微观机理相关的数据。为了解决这一问题,金属所研究团队首先发展了高精度的第一性原理计算算法,通过巧妙的数学处理拆解伊利艾伯格函数,将其在频率区间的分布与积分变换到电子及声子的动量空间,从而率先观测到了每个电子及声子动量对电声耦合的影响。为了验证算法,他们构建了金属铍表面的薄膜模型,计算不但获得了与实验结果相符的伊利艾伯格函数分布,严格修正了以往与实验严重偏离的结果,而且还为量化每个电子及声子动量对电声耦合的贡献提供了分析工具。 使用研究团队改进后的精确算法和工具,计算量化了电子动量空间下的伊利艾伯格函数,发现金属铍狄拉克节线量子态引发的鼓膜类拓扑非平庸表面态对其电声耦合的贡献占比超过了80%,这一发现澄清了长期以来广受争议的金属铍表面电声耦合反常增强的机理,同时也揭示了其它拓扑材料中存在相似的效应。审稿专家评价该工作的意义认为:“这些研究者正在刷新寻找改进量子计算和模拟并具有量子相干性的材料的科学(包括物理)。Perhaps the most significant impact of publishing LEA in PRL will be on the quantum information and simulation community. These researchers are scouring the sciences (including physics) looking for cases where having quantum coherence in the computation may improve the results.”另一位审稿人认为:“我认为这些新结果难以置信的引人入胜(I find these new results incredibly compelling),作者提供了清晰的证据表明表面电声耦合效应的反常增强来源于其体拓扑根源。” 该工作由金属研究所陈星秋研究员、特别研究助理李荣汉博士(共同一作)和博士生李江旭(共同一作)等共同完成,得到了国家相关人才计划和沈阳材料科学国家研究中心等支持。这个工作也是研究团队继两年前率先报道在铍、镁、钙和锶金属中拓扑狄拉克节线量子态后的又一重要进展。