《加速人工智能任务,同时保护数据安全》

  • 来源专题:新一代信息技术
  • 编译者: 王晓丽
  • 发布时间:2023-11-28
  • 随着计算密集型机器学习应用(如执行实时语言翻译的聊天机器人)的激增,设备制造商通常会采用专用硬件组件来快速移动和处理这些系统所需的海量数据。

    为这些被称为深度神经网络加速器的组件选择最佳设计极具挑战性,因为它们可能有大量的设计选项。如果设计者希望增加加密操作以保护数据安全,避免受到攻击,这个难题就会变得更加棘手。

    现在,麻省理工学院的研究人员开发出了一种搜索引擎,可以有效识别深度神经网络加速器的最佳设计,在提高性能的同时保护数据安全。

    他们的搜索工具被称为 "SecureLoop",旨在考虑增加数据加密和验证措施将如何影响加速器芯片的性能和能耗。工程师可以利用该工具获得针对其神经网络和机器学习任务的最佳加速器设计。

    与不考虑安全性的传统调度技术相比,SecureLoop 可以提高加速器设计的性能,同时保护数据。

    使用SecureLoop可以帮助用户提高要求苛刻的人工智能应用(如自动驾驶或医学图像分类)的速度和性能,同时确保敏感的用户数据免受某些类型的攻击。

    "如果你想在进行计算时保护数据的安全,那么我们以前用来寻找最优设计的规则现在已经被打破了。因此,所有的优化都需要针对这一新的、更复杂的约束条件进行定制。麻省理工学院计算机科学和电子工程实践教授、SecureLoop 论文的共同作者乔尔-埃默(Joel Emer)说:"这就是(第一作者)Kyungmi 在这篇论文中完成的工作。

    与埃默共同撰写论文的还有论文第一作者、电气工程与计算机科学研究生李京美(Kyungmi Lee),电气工程与计算机科学霍默-伯内尔职业发展助理教授、计算机科学与人工智能实验室(CSAIL)成员严孟嘉(Mengjia Yan),以及资深作者、麻省理工学院工程学院院长、电气工程与计算机科学范内瓦尔-布什(Vannevar Bush)教授阿南塔-钱德拉卡桑(Anantha Chandrakasan)。这项研究将在 IEEE/ACM 微体系结构国际研讨会上发表。


  • 原文来源:https://www.sciencedaily.com/releases/2023/10/231030194549.htm
相关报告
  • 《2020年的信息安全:人工智能(AI)在各种信息安全系统中的广泛涌现》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2019-11-05
    • 在过去的几年中,信息安全一直都是基于防病毒方案、隔离技术和加密技术的组合。政府机构和信息安全公司愿意采用跟踪互联网流量的方法,并根据其签名查找可疑材料。这些技术重点是在出现问题后去检测恶意软件,并去实现良好数据与恶意软件之间的隔离。但是,如果恶意软件未被检测到,它可能会在系统后台中潜伏数月甚至数年,并在以后变得活跃。 消费领域正在迅速变化。它正在从一种只有电脑、游戏机和智能手机连接到互联网的环境中迁移出来。渐渐地,这种环境集成了传感器、摄像头和智能家电等新型设备,其目的是让它们的所有者和用户实时了解生活中的许多事情:如房屋状况、家庭事务、人身安全、天气等等。 现在,我们有了一个更加复杂的环境,其中包含越来越多的设备,每一个设备都可能成为攻击目标,并且存在隐私和安全漏洞。然而,除了笔记本电脑和智能手机,这些联网设备通常最多只能执行一项或两项功能。如果它们是发源于设计目的,监控站可以向中央系统发出警报并标记问题。这就是人工智能(AI)和机器学习(ML)在保护消费者周边环境方面可以发挥的重要作用。 人工智能和机器学习对保护消费者的重要性 机器学习可被用于确定系统的行为模式,如网络上的流量、正在运行的应用程序、设备之间建立的通信。机器学习系统将追踪在设备、本地网络或云端中的模式。 在设备层面,本地机器学习系统将通过查看存储器、任务、IP地址等一系列参数来确定设备的正常运行模式,并确定在正常条件下的运行方式。在只有一种或两种功能的智能家用电器中,通过嵌入能增强机器学习引擎的神经网络加速器(NNA),可实现对行为模式的良好建模。设备可以将其元数据报告给网络级或云级系统,该系统将接收所有这些信息并在众多的设备群中进行分析。 在网络层面,路由器可以查看所有的流量,并可以运用自己的智能来确定联网中的设备何时与外界进行通信。通过使用机器学习引擎,它们可以评估何时出现异常通信,可以检测到从网络到外界的异常数据流,可以将其作为一个问题来报告。反之亦然,它们可以识别针对本地设备的异常流量来源。 在云端,应用程序的主机可以看到非常广泛的设备和网络,并且借助它们大型的计算资源,它们可以追踪整个环境中的实时活动。它们应用了与设备层面或网络层面相同的机器学习概念,但是由于其计算能力,它们可以处理更多的数据,并可以查看庞大生态系统的更加具体的信息。 来自商业和工业市场的经验 机器学习和取证分析在工业和商业环境中已经很普遍。在医院、运输系统、工厂、石油和天然气平台等工业领域内,都有基于机器学习的安全技术的成功示例。机器学习与分离敏感数据和追踪已知攻击的传统技术结合使用。它通过分析提供了早期识别破坏性行为的额外维度。由于互联设备生态系统不断增长的挑战,导致追踪单个设备变得越来越困难。需要人工智能系统的帮助才能确定设备在什么时候被恶意软件感染。 机器学习系统将能够检测到由安装在网络摄像头中的恶意软件所引起的Mirai僵尸网络(Mirai botnet)等攻击。该僵尸网络在美国东海岸的互联网目录服务器上发起了服务拒绝(DoS)攻击。无论是在设备层面还是在网络层面,通过使用机器学习技术都会检测到与攻击相关的异常行为,并会尽早通知设备所有者。 2020年的人工智能信息安全 机器学习在消费领域中的应用是非常广泛的。从检查隐私参数是否已被正确设置并定期追踪,到观察设备的运行、保护消费者的数据和私人信息,机器学习系统成为消费环境的守护者。它被置于设备内、路由器和托管应用的云端中,这些信息安全层共同协作,为设置设备和保护消费者提供指导。 通过将元数据设备和网络元数据传输到云级系统,设备和网络可以进行云分析和取证活动。云端机器学习和分析系统可以鸟瞰庞大的生态系统,它可以跨网络连接行为模式。虽然这些技术最初是在商业和工业市场中首创的,但是它们完全适用于消费领域。 总而言之,物联网(IoT)消费设备的连接增加了恶意软件的攻击面。同时,通过与云端运营商共享这些元数据,它使基于机器学习的分析能够提供基于本地环境行为模式的安全解决方案。
  • 《多国人工智能产业加速发展》

    • 来源专题:装备制造监测服务
    • 编译者:zhangmin
    • 发布时间:2020-12-29
    • 当前,以人工智能(AI)为代表的新兴信息技术蓬勃发展,人工智能应用技术正加速普及,特别是在医疗健康、教育、金融、安全防务等专业服务领域。咨询公司麦肯锡的一项最新研究发现,疫情防控以来,传统经济加快智能化转型,加速了以人工智能为代表的新技术转化速度,预计到2030年约有30%的工作岗位将实现自动化、智能化。   智能研发提速 机器人显身手   韩国MBN电视台近日推出本国第一位人工智能主播。外形和真人几乎完全相同的人工智能主播,模仿真人的声音和语调,顺利播报了当日的主要新闻和若干条快讯。MBN电视台表示,人工智能主播可以在发生灾难等紧急情况时,迅速向观众播报新闻内容,并可全天候持续工作,节省了大量人力、时间和费用成本。   德国的人工智能医疗机器人“阿达”一直备受关注。当人们在“阿达”的应用界面中输入症状后,“阿达”会通过人工智能算法分析评估病人的症状并给出治疗建议。“阿达”的诊疗“天赋”源于70多名医生、数学家、数据专家和计算机科学家的知识与经验。负责开发“阿达”的科技公司负责人纳特哈特表示:“我们用了7年时间专注研究人工智能的数据处理问题,并建了一个全球医学专家网络来提供医学支持。”目前,全球已有超过300万人使用过“阿达”。2017年,这家初创企业获得了4000万欧元投资。   去年11月,日本NTT公司和日本国立情报学研究所宣布,其研发的人工智能技术挑战当年日本“高考”英语满分200分的笔试题,获得了185分的高分。NTT公司称,他们一直致力于提高人工智能对英语笔试题的自动解答技术、提升其借助深度学习所获得的自然语言处理知识。自2011年起,日本国立情报学研究所和东京大学等合作发起人工智能项目,检验人工智能可在多大程度上模拟人类思考以及解决问题的能力。   不久前,第二届欧盟人工智能联盟大会集中展示了一批典型案例,介绍人工智能应用技术如何助力疫情防控。比如,训练智能机器人来照顾新冠肺炎患者,利用人工智能系统分析病人肺部CT,以减轻医护人员工作压力。比利时鲁汶大学医学影像研究中心主席兼教授苏艾腾表示,实践证明,人工智能比放射医师更能有效地分析肺部CT。   多国出台政策 力促产业发展   近年来,越来越多国家出台政策扶持人工智能产业发展。欧盟今年2月发布《人工智能白皮书》,力促人工智能产业发展。在过去3年里,欧盟用于人工智能研究和创新的资金增至15亿欧元,同比增长70%。欧盟近期还提出了一项重大的专项拨款,用于支持在“数字欧洲”计划下的人工智能研究项目。欧盟希望未来10年每年吸引超过200亿欧元的投资用于人工智能领域。   法国2018年5月出台“法国人工智能战略”,从政策层面力促研究机构将人工智能研发成果商业化。法国政府计划在2022年底前投入15亿欧元用于人工智能产业发展。仅2019年,法国新注册的人工智能企业就达102家。   2019年12月,韩国政府发布“人工智能国家战略”,提出九大领域100个课题,计划2030年时将韩国在人工智能领域的竞争力提升至世界前列。韩国政府力争到2021年成功打造人工智能开发平台、全面开放公共数据,到2024年建立光州人工智能园区,到2029年为新一代存算一体人工智能芯片研发投入约1万亿韩元(1美元约合1090韩元)。   去年6月,日本政府出台“人工智能战略2019”,旨在从全球范围内吸引人才,增强本国人工智能产业竞争力。去年12月,东京大学和软银公司签署协议,宣布将共同打造世界顶尖的人工智能研究所,致力于开展人工智能的基础研究和应用研究。软银将在今后10年为此投资200亿日元(1美元约合104日元)用于相关研究,促进日本人工智能研究及相关产业发展。   应用前景广阔 助益经济增效   专家表示,未来全球可持续增长越来越依赖于数据所创造的价值,而人工智能是数字经济中最重要的应用技术之一。人工智能将在精准农业、远程医疗、自动驾驶等方面大有作为。   普华永道的最新研究指出,到2030年,凭借运用人工智能技术的创新型产品与效率的提升,全球经济总量有望额外增长13.4万亿欧元。研究认为,德国大部分行业尤其是医疗、能源和汽车行业的生产率将因人工智能技术应用而显着提高,预计到2030年德国经济将实现11.3%的额外增加值。韩国政府预计,如果人工智能国家战略相关措施得以有效实施,到2030年,韩国将在人工智能领域创造455万亿韩元经济效益。   日本经济产业省对制造业及建筑业等大约2000家中小企业和提供人工智能服务的企业实施调查,并筛选出可用人工智能替代的业务,估算出如果中小企业引进人工智能技术,到2025年将产生11万亿日元的经济效益,可在一定程度上解决少子老龄化造成的劳动力缺口问题。   韩国延世大学教授金时镐指出,随着人工智能产业的发展,各国政府需要研究各种可能出现的新问题,包括以基本劳动力为中心的工作岗位消失、人工智能服务安全性、数据安全等问题,提前研究应对策略以及必要的法律和制度修订。 作者:牛瑞飞 马菲