《2020年的信息安全:人工智能(AI)在各种信息安全系统中的广泛涌现》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2019-11-05
  • 在过去的几年中,信息安全一直都是基于防病毒方案、隔离技术和加密技术的组合。政府机构和信息安全公司愿意采用跟踪互联网流量的方法,并根据其签名查找可疑材料。这些技术重点是在出现问题后去检测恶意软件,并去实现良好数据与恶意软件之间的隔离。但是,如果恶意软件未被检测到,它可能会在系统后台中潜伏数月甚至数年,并在以后变得活跃。

    消费领域正在迅速变化。它正在从一种只有电脑、游戏机和智能手机连接到互联网的环境中迁移出来。渐渐地,这种环境集成了传感器、摄像头和智能家电等新型设备,其目的是让它们的所有者和用户实时了解生活中的许多事情:如房屋状况、家庭事务、人身安全、天气等等。

    现在,我们有了一个更加复杂的环境,其中包含越来越多的设备,每一个设备都可能成为攻击目标,并且存在隐私和安全漏洞。然而,除了笔记本电脑和智能手机,这些联网设备通常最多只能执行一项或两项功能。如果它们是发源于设计目的,监控站可以向中央系统发出警报并标记问题。这就是人工智能(AI)和机器学习(ML)在保护消费者周边环境方面可以发挥的重要作用。

    人工智能和机器学习对保护消费者的重要性

    机器学习可被用于确定系统的行为模式,如网络上的流量、正在运行的应用程序、设备之间建立的通信。机器学习系统将追踪在设备、本地网络或云端中的模式。

    在设备层面,本地机器学习系统将通过查看存储器、任务、IP地址等一系列参数来确定设备的正常运行模式,并确定在正常条件下的运行方式。在只有一种或两种功能的智能家用电器中,通过嵌入能增强机器学习引擎的神经网络加速器(NNA),可实现对行为模式的良好建模。设备可以将其元数据报告给网络级或云级系统,该系统将接收所有这些信息并在众多的设备群中进行分析。

    在网络层面,路由器可以查看所有的流量,并可以运用自己的智能来确定联网中的设备何时与外界进行通信。通过使用机器学习引擎,它们可以评估何时出现异常通信,可以检测到从网络到外界的异常数据流,可以将其作为一个问题来报告。反之亦然,它们可以识别针对本地设备的异常流量来源。

    在云端,应用程序的主机可以看到非常广泛的设备和网络,并且借助它们大型的计算资源,它们可以追踪整个环境中的实时活动。它们应用了与设备层面或网络层面相同的机器学习概念,但是由于其计算能力,它们可以处理更多的数据,并可以查看庞大生态系统的更加具体的信息。

    来自商业和工业市场的经验

    机器学习和取证分析在工业和商业环境中已经很普遍。在医院、运输系统、工厂、石油和天然气平台等工业领域内,都有基于机器学习的安全技术的成功示例。机器学习与分离敏感数据和追踪已知攻击的传统技术结合使用。它通过分析提供了早期识别破坏性行为的额外维度。由于互联设备生态系统不断增长的挑战,导致追踪单个设备变得越来越困难。需要人工智能系统的帮助才能确定设备在什么时候被恶意软件感染。

    机器学习系统将能够检测到由安装在网络摄像头中的恶意软件所引起的Mirai僵尸网络(Mirai botnet)等攻击。该僵尸网络在美国东海岸的互联网目录服务器上发起了服务拒绝(DoS)攻击。无论是在设备层面还是在网络层面,通过使用机器学习技术都会检测到与攻击相关的异常行为,并会尽早通知设备所有者。

    2020年的人工智能信息安全

    机器学习在消费领域中的应用是非常广泛的。从检查隐私参数是否已被正确设置并定期追踪,到观察设备的运行、保护消费者的数据和私人信息,机器学习系统成为消费环境的守护者。它被置于设备内、路由器和托管应用的云端中,这些信息安全层共同协作,为设置设备和保护消费者提供指导。

    通过将元数据设备和网络元数据传输到云级系统,设备和网络可以进行云分析和取证活动。云端机器学习和分析系统可以鸟瞰庞大的生态系统,它可以跨网络连接行为模式。虽然这些技术最初是在商业和工业市场中首创的,但是它们完全适用于消费领域。

    总而言之,物联网(IoT)消费设备的连接增加了恶意软件的攻击面。同时,通过与云端运营商共享这些元数据,它使基于机器学习的分析能够提供基于本地环境行为模式的安全解决方案。

相关报告
  • 《人工智能时代如何构建安全生态?》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-06
    • AlphaGo与人类博弈胜利,已经注定了人工智能的发展将成为未来科技发展的主流方向之一,并且正在不断渗透到我们整个社会中来,智能制造、智能零售、智慧园区、医疗健康、智慧教育、智慧城市方方面面都离不开人工智能的存在,这无疑是一片巨大的蓝海。 然而,机遇与挑战并存,面对飞速发展的人工智能尚不能盲目乐观。在AI的世界里,安全远远不只是我们传统讲到的一些网络、系统以及软件的风险,在AI时代里传感器的安全、数据的风险也成为非常重的层次。 那么如何解决这方面的安全问题呢?对此,百度安全事业部产品总经理韩祖利讲到:“安全不是一家或者一个公司就可以做好的,需要全行业一起建立一个共赢共生的安全生态。安全生态的建设,离不开关系、技术和数据三大关键点。” AI时代生态安全面临挑战 在韩祖利看来,人工智能所面临的安全挑战,纵贯传感器、软件、数据、系统、网络多个层面。当下,尽管人工智能在某些方面精准度可超过人类,显著提升规则化安全工作的效率,但在复杂情况下还远远达不到,且极易受干扰。 他举例称,比如我们在图片里恶意的插入一些信息,也就是通过数据投毒来欺骗机器人。 此外,随着深度学习的发展,现在越来越多的智能设备开始应用生物识别技术,但这一技术也存在风险,因为生物特征极易被采集、复制、且复制成本低廉,此外人工智能行业尚缺乏统一标准,生物认证单靠一个因子并非完全可靠。 智能摄像头也非常大比例的存在一些安全性的问题。如果摄像头是放在机房里还好,如果放在家里,那么对整个个人隐私威胁非常之大。 近期,信通院泰尔实验室联合百度安全面向市面上的主流智能电视进行了安全漏洞测评,结果无一幸免。“AI时代假如没有安全,家里各种智能家居都会向你发出勒索请求。AI确确实实给我们带来了好处,而它带来的风险也是非常剧烈的,并且就在我们身边。”韩祖利说。 共建安全生态离不开三个点 针对AI可能带来的安全问题,并不是一家企业和公司就可以做好的,需要整个行业的共同努力,建立一个安全的生态来使整个行业获得更好的安全防护。 对此,韩祖利总结了三个关键点。首先是关系,所谓的关系就是建立信任,包括人与人之间的信任、公司与公司之间的信任以及跨产业合作的信任。“因为合作,可能他们会对安全有更加清晰的认识,并且逐渐开始认可这方面,这就是合作产生的一种信任。”韩祖利说。 其次就是技术,要防止碎片化。“我们经常看到因为交流较少,导致一家公司出了一款产品,另一家公司又做了另外一套系统,系统相互之间是完全间隔的,产业用户就非常痛苦,选择一个体系,整个碎片化就产生了。”韩祖利讲到:“对于这点,我们希望在技术上大家一起去建立一些行业的技术标准,规范很多产业的结构,尽量去做很多开源。” 据透露,在九个月百度安全也会开源大概7款工具产品,这些工具产品也希望跟整个产业里一起来为企业服务。 最后就是数据。大家都知道安全的核心就是持续的对抗,对抗最主要的东西就是数据,情报的本质也是数据。所以,无论在过去、现在或者是未来,数据对我们来讲都非常重要。“我们希望大家一起在整个数据脱敏下共享这些数据,甚至联合计算可以做到非常容易,既不会泄露用户的隐私,也不会泄露商业机密,同时我们安全的架构又可以成立。”韩祖利讲到。 最后,韩祖利表示:“AI的来临是一个生产力变革的时代,但是我不是特别赞同AI是对人类有太大威胁的,在每个变革的时间节点,我们都解决了存在的问题,并且取得了很好的发展,因此在智能时代,作为一个安全的从业者,我觉得还是充满信心的。”
  • 《Nature | 医学人工智能的未来》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-29
    • 本文内容转载自“ChemBioAI”微信公众号。原文链接: https://mp.weixin.qq.com/s/hlwb9sc0rugxZ_ThiOy7gQ 2023年10月24日,《自然》新闻(Nature News)在线发表了一篇题为An AI revolution is brewing in medicine. What will it look like?的特别报道。 Jordan Perchik于2018年开始在亚拉巴马大学伯明翰分校进行放射科住院医生培训,那时正值他所谓的放射科学领域的“AI恐慌”高峰期。在计算机科学家Geoffrey Hinton宣称人们应停止培训成为放射科医生的仅仅两年后,这一时期开始。Hinton被称为人工智能之父,他预测这些系统很快将能够比人类更好地阅读和解释医学扫描图像和X光片。此后,放射科医学项目的申请数量大幅下降。 基于人工智能的工具越来越多地成为医疗保健的一部分,美国食品和药品监督管理局(FDA)已经授权使用超过500种这类工具。其中大多数与医学影像有关,用于改进图像质量、测量异常或标记检测结果以供后续跟踪。 调查显示,虽然许多医生知道临床AI工具的存在,但实际上只有很小一部分 (大约在10%到30%之间) 使用过它们,他们的态度从谨慎乐观到彻底不信任不等。荷兰乌得勒支大学医疗中心的医学创新实施专家Charisma Hehakaya说:“一些放射科医生对AI应用的质量和安全性存在疑虑。”即使AI工具能够完成它们的目标任务,仍不清楚这是否会转化为患者更好的医疗护理。但有一种被称为综合医学AI的方法似乎正在兴起。这些模型受到庞大数据集的训练,就像驱动ChatGPT和其他AI聊天机器人的模型一样。在吸收大量医学图像和文本数据后,这些模型可以适用于许多任务。尽管目前获得批准的工具执行特定功能,比如在计算机断层扫描(CT)中检测肺结节,但这些综合模型将更像医生,评估扫描中的每一种异常情况,并将其整合为一种诊断。 尽管现在的AI爱好者趋向避免大胆宣称机器将取代医生,但许多人认为,这些模型可以克服目前医学AI的某些限制,有朝一日可能在某些情况下超越医生。然而,这些新工具能够在实际临床护理中使用之前,还有漫长的道路需要走。 目前存在的限制 医学领域的人工智能工具充当从业者的辅助角色,例如通过快速浏览扫描图像并标记医生可能立即查看的潜在问题,这些工具有时表现很出色。Jordan Perchik记得有一次,在他值夜班的时候,一种AI分诊工具在凌晨3点为一名出现呼吸急促症状的患者标记了一张胸部CT扫描。他将这张扫描图像提上优先级,并同意AI的评估结果,该结果显示患者存在肺栓塞,这是一种可能致命且需要立即治疗的情况。如果没有被标记出来,这张扫描图像可能要等到当天晚些时候才会被评估。 但如果AI犯了错误,它也会产生相反的效果。Jordan Perchik说,最近他发现了一例AI没有标记出来的肺栓塞病例,他决定采取额外的审查步骤,最终证实了他的评估,但这减缓了他的工作进度。如果他决定相信AI并继续前进,那么这种情况可能会被漏诊。”许多已获批准的设备并不一定符合医生的需求,早期的AI医学工具是根据影像数据的可用性来开发的,因此一些应用程序是为常见且容易识别的疾病而建立的。 另一个问题是,这些AI工具倾向专注于特定任务,而不是全面解释医学检查——观察图像中可能相关的一切,考虑以前的结果和患者的临床病史。尽管专注于检测一些疾病具有一定价值,但它并不反映放射科医生真正的认知工作。 解决方案通常是增加更多基于AI的工具,但这也对医疗护理构成挑战,伦敦Google Health的临床研究科学家Alan Karthikesalingam表示。假如一个人接受常规乳腺X光检查,技术员可能会采用一种用于乳腺癌筛查的AI工具的辅助。如果发现异常,同一患者可能需要进行磁共振成像(MRI)扫描以确认诊断,而这可能需要另一个AI设备。如果诊断结果得到确认,那么病变将会通过手术移除,可能需要另一种AI系统来协助进行病理学分析。 许多医院并不了解监测AI性能和安全性所涉及的挑战,英国伯明翰大学研究医疗AI负责创新的临床研究员Xiaoxuan Liu表示。她和她的同事们确定了数千份医学成像研究,比较了深度学习模型的诊断性能与医疗保健专业人员的性能。对于该团队评估的69项诊断准确性研究,一个主要发现是,大多数模型未经真正独立于用于训练模型的信息的数据集进行测试。这意味着这些研究可能高估了模型的性能。 坚实的基础 为了解决医学领域AI工具的一些限制,研究人员一直在探索具备更广泛能力的医学人工智能。他们受到了像ChatGPT这样的革命性大型语言模型的启发。这个术语是由斯坦福大学的科学家们在2021年创造的,它描述了在广泛的数据集上进行训练的模型,这些数据集可以包括图像、文本和其他数据,使用一种称为自监督学习的方法。这些基础模型,也被称为基本模型或预训练模型,构成了后续可以适应执行不同任务的基础。 目前大多数医学AI设备是通过监督学习方法开发的。例如,使用这种方法训练一个模型来识别肺炎,需要专家分析大量的胸部X光片并将它们标记为“肺炎”或“非肺炎”,以教导系统识别与该疾病相关的模式。在基础模型中不需要大量图像的注释。例如,对于ChatGPT,使用大量文本进行训练,以训练一个通过预测句子中的下一个单词来学习的语言模型。同样,伦敦摩尔菲尔德眼科医院的眼科医生Pearse Keane及其同事开发的医学基础模型使用了160万张视网膜照片和扫描图像,以学习如何预测这些图像缺失部分应该是什么样子。在进行了这一预训练后,研究人员引入了几百张标记图像,使其能够学习特定的与视觉相关的疾病,如糖尿病性视网膜病变和青光眼。该系统在检测这些眼部疾病以及通过眼底血管微小变化检测出的心脏病和帕金森病等系统性疾病方面优于以前的模型,但该模型尚未在临床环境中进行测试。 Keane表示,基础模型对眼科学领域特别合适,因为几乎可以对眼部的每个部位进行高分辨率成像。而且有大量的这些图像数据可用于训练这种模型。人工智能将彻底改变医疗保健,而眼科学可以成为其他医学专业的示范。大型科技公司已经在投资使用多种图像类型的医学成像基础模型,包括皮肤照片、视网膜扫描、X光片和病理学切片,并整合电子健康记录和基因组数据。 今年6月,Google Research科学家们发表了一篇论文,介绍了他们称之为REMEDIS(具有自监督的强大和高效医学成像)的方法,与使用监督学习训练的AI工具相比,该方法能够将诊断准确性提高高达11.5%。研究发现,在对未标记图像的大型数据集进行预训练后,只需要少量标记图像就能达到这些结果。这项研究的共同作者之一,Karthikesalingam说:“我们的主要发现是,REMEDIS能够以非常高效的方式,只需很少的示例,学会如何在许多不同的医学图像中对许多不同的事物进行分类,包括胸部X光片、数字病理学扫描和乳腺X光检查。”次月,Google的研究人员在一篇预印本中描述了他们如何将这一方法与该公司的医学大型语言模型Med-PaLM相结合,该模型几乎可以像医生一样回答一些开放性的医学问题。结果表明,Med-PaLM Multimodal不仅可以解释胸部X光图像,还可以以自然语言起草医疗报告。 微软也在努力将语言和视觉整合到一个单一的医学AI工具中。今年6月,公司的科学家们推出了LLaVA-Med(生物医学大型语言和视觉助手),该模型在与从PubMed Central(一个公开可访问的生物医学文章数据库)提取的文本配对的图像上进行训练。微软Health Futures的生物医学AI研究负责人Hoifung Poon表示:“一旦你这样做,你就可以开始与图像进行对话,就像你在与ChatGPT交谈一样。” 这种方法的一个挑战是它需要大量的文本-图像对。 随着这些模型在越来越多的数据上进行训练,一些科学家乐观地认为它们可能能够识别人类无法识别的模式。AI工具可能在某些领域超越人类能力,比如使用数字病理学来预测免疫疗法对肿瘤的反应。 Karthikesalingam还指出,即使Google的医学成像AI取得了最佳结果,它仍然无法与人类相媲美。人类放射科医生的X光报告仍然被认为明显优于最先进的多模式综合医学系统。尽管基础模型似乎特别适合扩大医学AI工具的应用,但要展示它们可以安全用于临床护理还有很长的路要走。 毫无疑问,AI在放射科领域的作用将继续增长,与其说取代放射科医生,不如培训他们如何使用AI。