《bioRxiv,5月17日,Computational Study of Ions and Water Permeation and Transportation Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-05-18
  • Computational Study of Ions and Water Permeation and Transportation Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel

    Yipeng Cao, Rui Yang, Wei Wang, Imshik Lee, Ruiping Zhang, Wenwen Zhang, Jiana Sun, Bo Xu, Xiangfei Meng

    doi: https://doi.org/10.1101/2020.05.17.099143

    Abstract

    Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus (SARS-CoV-2) and represents the causative agent of a potentially fatal disease that is of public health emergency of international concern. Coronaviruses, including SARS-CoV-2, encode an envelope (E) protein, which is a small, hydrophobic membrane protein; the E protein of SARS-CoV-2 has high homology with that of severe acute respiratory syndrome coronavirus. (SARS-CoV) In this study, we provide insights into the function of the SARS-CoV-2 E protein channel and the ion and water permeation mechanisms on the basis of combined in silico methods. Our results suggest that the pentameric E protein promotes the penetration of monovalent ions through the channel. Analysis of the potential mean force (PMF), pore radius and diffusion coefficient reveals that Leu10 and Phe19 are the hydrophobic gates of the channel. In addition, the pore demonstrated a clear wetting/dewetting transition with monovalent cation selectivity under transmembrane voltage, which indicates that it is a hydrophobic voltage-dependent channel. Overall, these results provide structural-basis insights and molecular-dynamic information that are needed to understand the regulatory mechanisms of ion permeability in the pentameric SARS-CoV-2 E protein channel.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.05.17.099143v1
相关报告
  • 《5月17日_SARS-CoV-2五聚体E蛋白通道的离子与水渗透和运输机理的计算研究》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-19
    • 1.时间:2020年5月17日 2.机构或团队:天津医科大学、国家癌症临床研究中心、国家超级计算机中心、南开大学附属医院、南开大学、重庆大学 3.事件概要: 5月17日,bioRxiv预印本平台发表了来自天津医科大学、国家癌症临床研究中心和国家超级计算机中心等机构的研究团队的题为“Computational Study of Ions and Water Permeation and Transportation Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel”的文章。 文章指出,冠状病毒(包括SARS-CoV-2)编码一种包膜(E)蛋白,它是一种小的疏水膜蛋白。SARS-CoV-2的E蛋白与SARS-CoV具有高度同源性。该研究将结合计算机模拟方法,深入了解SARS-CoV-2 E蛋白通道的功能以及离子和水的渗透机制。文章指出,结果表明,五聚体E蛋白促进单价离子通过通道的渗透。分析潜在平均力(PMF)、孔半径和扩散系数的结果表明Leu10和Phe19是通道的疏水门。另外,在跨膜电压下,孔表现出明显的润湿/去润湿转变,具有单价阳离子选择性,这表明它是疏水性电压依赖性通道。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接https://www.biorxiv.org/content/10.1101/2020.05.17.099143v1
  • 《bioRxiv,5月17日,Binding of the SARS-CoV-2 Spike Protein to Glycans》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-18
    • Binding of the SARS-CoV-2 Spike Protein to Glycans Wei Hao, Bo Ma, Ziheng Li, Xiaoyu Wang, Xiaopan Gao, Yaohao Li, Bo Qin, Shiying Shang, Sheng Cui, Zhongping Tan doi: https://doi.org/10.1101/2020.05.17.100537 Abstract The 2019 novel coronavirus (SARS-CoV-2) is the seventh human coronavirus. The pandemic of this virus has caused a high number of deaths in the world. In order to more efficiently combat this pandemic, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the initial attachment of the virus to cell-surface glycans like heparan sulfate (HS) proteoglycans and sialic acid-containing oligosaccharides. In this study, we used glycan microarray technology to study the binding of the SARS-CoV-2 spike protein (S protein) to HS and sialic acid. Our results indicated that the S protein can bind to HS in a sulfation-dependent manner and the length of HS appears not to be a critical factor for the binding. No binding with sialic acid residues was detected. In addition, we applied sequence alignment and molecular docking to analyze and explain the observed binding results. Our results suggested that HS may stabilize the open conformation of the S protein to promote the subsequent binding of the S protein to the virus entry receptor ACE2. Overall, this work supports the potential importance of HS in SARS-CoV-2 infection and in the development of antiviral agents.