《深圳先进院阐明摄食全过程的序列性神经调控机制》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-13
  • 自然环境变幻莫测。自然界中的动物即使在摄食过程中也需要时刻关注环境中的各种线索,一方面有助于及时发现危险,另一方面利于获取更多资源。长期以来,由于缺乏细致分析动物多种自发行为的手段,科学家主要利用摄食量这一指标来评价动物的摄食行为。当前的研究将摄食行为简化为三个阶段——饥饿-寻找食物、摄入食物、饱食-停止摄食。目前已发现数十个脑区的多种神经元参与摄食行为不同阶段的神经调控,而关于这些神经元如何平衡动物的各种动机并调控各种自发行为知之甚少。

      近日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所王立平团队在《神经元》(Neuron)上,在线发表了题为An iterative neural processing sequence orchestrates feeding的研究论文。该研究描述了小鼠摄食行为与非摄食行为交替出现的片段化摄食行为特征,并揭示了多群神经元依次调控每次摄食行为的准备、发起和维持的神经机制。  王立平团队利用深度学习算法辅助的行为跟踪与记录系统,对小鼠摄入食物这一阶段中的自发行为开展了细致研究。研究通过深度学习算法识别单帧录像中小鼠的动作,识别出14种特征动作,并通过聚类算法将这些动作划分为8种有意义的行为,进而将这些行为分为摄食、行走和探索环境等三类,并将小鼠在摄入食物这一阶段的自发行为描述为“靠近食物、摄食、离开食物、探索环境”等一系列行为的循环。

      研究通过分析不同自发行为过程中的神经元钙反应发现,ARCAgRP神经元在小鼠饥饿,环境中有食物,但小鼠在探索环境而没有去吃的情况下被激活,而在靠近食物和摄食过程中被抑制;LHGABA神经元在小鼠发起摄食行为的时候被激活,激活时间与摄食行为持续时间无关;而DRGABA神经元在摄食过程中持续激活,激活时间与摄食时间成强烈的正相关关系,同时这些神经元在小鼠离开食物探索环境时被抑制。

      进一步,研究利用光遗传方法验证了ARCAgRP、LHGABA和DRGABA神经元在小鼠片段化摄食行为中的功能。抑制ARCAgRP神经元会使饥饿小鼠表现出更多的探索环境行为并减少摄食行为,而激活这些神经元,在有食物的情况下会减少探索环境行为而增加摄食行为,但在只有塑料假食物存在的情况下并不影响探索环境行为。先前的研究表明,ARCAgRP神经元编码负性价值。研究由此推测,ARCAgRP神经元的功能是,在饥饿情况下对正在进行的与摄食无关的行为进行限制,由此可以使摄食相关动机占据主导地位,从而帮助发起摄食行为。激活LHGABA神经元会使小鼠表现出强烈的啃咬行为,而抑制这些神经元会导致饥饿的小鼠无法啃咬食物。因此研究推测,LHGABA神经元介导了摄食行为的发起。激活DRGABA神经元会显著延长小鼠的摄食行为,而抑制这些神经元会显著缩短摄食行为,故研究推测DRGABA神经元参与调控摄食行为的维持。因此,ARCAgRP、LHGABA和DRGABA神经元分别调控片段化摄食行为的准备、发起和维持。  与小鼠类似,人类也存在片段化摄食的现象,在摄食过程中并不会一直关注食物,而是会不断关注周围环境。集中时间吃饭是社会化训练的结果,幼童会一边吃饭一边玩耍,而成人通常在吃饭的同时进行社交活动。该研究加深了科学家对摄食行为和摄食过程中神经调控机制的认知,将为摄食障碍相关疾病的治疗奠定新的理论基础。

      本研究建立的行为精细分析方法适用于各种其他本能行为的研究。动物的各种本能行为包含多种动机相互竞争、行为发起与维持以及被其他动机所干扰而中断等过程,且在这个过程中会涉及多群神经元的分工合作。外界环境和动物的内在状态会对各群神经元的反应模式进行动态调控,从而实现对动物行为的调控,使得动物可以适应环境、生存繁衍。本研究为解析多种本能行为各阶段的精细神经调控机制打下了基础,为探索动物在自然选择中形成的本能行为策略的神经计算机制提供了理论框架,将为通用人工智能的发展提供更多的理论依据。

      研究工作得到国家自然科学基金和广东省重点领域研发计划等的支持。香港城市大学的科研人员参与研究。

  • 原文来源:https://www.cas.cn/syky/202303/t20230316_4880254.shtml
相关报告
  • 《深圳先进院关于细胞命运决定机制的研究获进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-31
    • 细胞分化使基因型相同的细胞产生在形态、结构和生理功能上差异的细胞。关于细胞分化过程的发生,经典表述认为细胞的基因功能以及它们形成的复杂调控网络在时空上控制了基因的表达量,从而编程了细胞命运决定(fate determination)的过程。尽管我们可以解析大部分基因的功能、测量基因表达的时空动力学、绘制出基因调控网络的草图,但在细胞命运决定过程中仍然无法理解基因差异表达的源头、无法精确预测命运决定过程的走向。   3月24日,中国科学院深圳先进技术研究院合成生物学研究所傅雄飞团队在Nature Chemical Biology上,发表了题为Unbalanced response to growth variations reshapes the cell fate decision landscape的研究成果。该研究运用造物致知的研究范式,通过定量实验和数理模型,探索细胞生长速率对经典人工合成基因线路-互抑制回路-的双稳态性的影响,发现了不同基因的表达量对生长速率呈现不平衡、不同步的响应,进而重塑细胞命运决定景观(Landscape)。该研究表明生长速率可以在全局上调控基因表达网络中每个基因的表达水平从而改变细胞命运,并不一定依赖特定调控因子。该研究为命运决定调控机制研究提供了新视角,并为通过合成生物方法定量控制细胞命运用于医学和工业用途提供了新思路。   科学家运用生物化学和分子生物学手段,研究基因的功能和调控关系以及信号的传导机制,绘制出细胞命运决定网络的草图;合成重构了功能基因网络如双稳态开关、生物振荡、斑图形成,这使得人类在造物之路上迈出了跨越式的脚步。然而,抛开该网络中基因的细节,我们仍无法理解在细胞命运决定网络中信息如何传递,也无法预测该网络运行的状态,进而推断出细胞命运的走向。如果我们跳出网络的细节,从全局的范围来看整个网络,是否存在特别的因素能够重塑细胞命运决定景观(Landscape),甚至涌现出新的功能?         为了探究细胞的生长速率对基因网络是否存在影响,科研团队利用经典合成基因线路——拨动开关线路(the toggle switch1)来研究这种可能性。拨动开关线路由两个相互阻遏的基因所构成,使得该线路在稳态(stable states)下只能存在一种基因处于高表达状态。这样的网络拓扑结构广泛存在于自然界,例如,λ噬菌体溶菌-溶原决定、线虫左右味觉神经分化。此外,构成这一线路的元件已被广泛定量表征,与宿主自生基因调控网络相正交,因此可以排除宿主自身状态对基因线路的直接调控,且利于定量分析网络的稳态行为。   科研团队偶然发现,在SOB培养基中,细胞的初始状态无论是红色状态还是绿色状态,细胞在经历一步生长的过程,平台期的细胞均会处于红色状态(图1)。因此研究推测,可能存在某种全局性的生理变化,影响了细胞命运决定决策。   受到细菌生理学研究工作的启发,科研团队在不同的细胞生理稳定状态(physiology steady state)下观察拨动开关线路的稳态特征以及双稳态性。实验结果表明,基因线路的双稳态性与细胞的生长速率存在关联关系(图2)。当细胞生长速率大于0.5 h-1 时,拨动开关存在双稳态性,当细胞生长速率低于这一临界生长速率时,拨动开关的双稳态性出现了分岔(bifurcation),也就说,细胞在慢速生长状态下,只能维持红色稳态,线路的双稳态性消失了。进一步,研究认为似乎存在这样的可能性:生长速率的变化可以引起命运决定网络稳态特性,并左右细胞的命运走向。   为了进一步揭示细胞生理状态变化是如何主导细胞的命运决定过程,科研团队定量表征了不同生长状态下拨动开关中两个阻遏蛋白的表达水平。研究发现,两个基因的表达水平会随着细胞生长速率放缓呈现出上升趋势,同时,上升的速率大于细胞生长放缓带来的稀释速率降低的影响;研究推断两个基因的翻译速率也随细胞生长速率发生了变化。研究利用荧光蛋白定量表征、转录组学数据发现,两者的表达水平尽管在总体趋势上均呈现出与细胞生长速率负相关的关系,但表达速率的最大峰值以及相对变化值不同(图3a)。利用数理模型,研究评估了这种非平衡的生长速率依赖的基因表达模式对基因线路稳定性的影响(图3b、c),并证明了这种生长速率的依赖性给拨动开关的双稳态性带来了分岔的可能(图3d)。         研究通过进一步分析数理模型发现,拨动开关发生分岔的临界生长速率也可以被阻遏蛋白的阻遏阈值(解离常数)所调控。研究显示,通过改变LacI结合位点序列,可以改变LacI蛋白对TetR蛋白表达的阻遏阈值;由此得到了阻遏强度与原始序列(LO1)更强的两个突变体——LO2和LO3,同时通过定量实验测定了三者的阻遏阈值以及不同生理条件下的稳态状态与数量(图4)。研究发现,相较于LO1、LO2表现出在实验可测的生长速率范围内均具有双稳态性,而LO3则表现为在生长速率大于临界生长速率时呈现出绿色状态的单稳态,且速率低于临界生长速率时则呈现双稳态性。这一结果与数理模型的预测一致。   在稳态条件下,生长速率可以重塑细胞的命运决定景观。另一个重要的问题是:细胞的生命活动过程是一个非平衡的系统,那么,细胞命运的决策是如何在变动的环境下发生的?   科研团队通过扰动细胞生长速率来探讨这一问题,通过动态改变培养基的成分,来实现细胞生长速率切换,并实时追踪细胞的状态。研究将细胞在快速生长条件下培养至生理稳定状态,再切换到营养贫瘠的培养基(生长降档),等细胞恢复到生理稳定状态再切换回到营养丰富的培养基(生长升档)。研究发现,初始状态为绿色状态的LO1菌株在生长降档过程最初阶段,红绿两种状态同时发生升高;随着红色状态的升高,绿色状态开始下降,并最后稳定在红色状态。而LO3菌株,由于在慢速生长条件下为双稳态,全过程维持绿色状态不变。研究将LacI和TetR的表达速率与瞬时生长速率之间进行准稳态近似,构建了基因线路的确定性动力学模型。该模型可较好地捕捉细胞在升档和降档过程中的动力学特征。   尽管LO2菌株在任何生长速率范围内均表现为双稳态,但因细胞发生了分化,该菌株在生长降档过程中一部分细胞仍能维持绿色状态而一部分则分化为红色。这一现象无法被确定性的动力学模型所预测。科研团队利用势能景观图(potential landscape),定量地研究了不同生长速率下,基因表达的噪声对细胞的命运决定的影响。研究发现,当细胞生长速率处于较慢或者较快时,势能景观中两个稳定态之间的能垒较低,这意味着细胞更易因噪声而发生状态的切换;因而LO2菌株在处于降档过程中,一部分细胞在随机性的推动下发生状态切换。   研究表明,细胞的命运决定过程可以通过两种方式决定——确定性机制,网络的稳态性质变化,而引起细胞群体完全发生状态切换;通过噪声驱动,在临界点附近发生状态的跳转,以控制部分群体发状态的切换。
  • 《深圳先进院研制成功新型光-电镊原型系统》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-01-10
    • 中新网深圳1月9日电 (索有为 周璨 马祯祥)中国科学院深圳先进技术研究院(简称“深圳先进院”)9日发布消息称,该院医工所智能医用材料与器械研究中心杜学敏研究员团队自主研制出了新型光-电镊原型系统(Photopyroelectric tweezer,PPT),可实现对不同材质、相态和形状物体的非接触、跨尺度、普适、多功能操控。新型光-电镊原型系统。研究团队供图 在过去几十年里,有多次诺贝尔奖与光镊操控技术相关。但传统光镊面临着系统复杂、光损伤、操控作用力小、操控颗粒范围窄、仅适用于透明物体等诸多挑战,严重阻碍其实际应用。 深圳先进院研制的该光-电镊能采用比传统光镊小7个数量级的光强,产生比传统光镊大7个数量级的操控作用力,进而成功实现体积范围跨越10个数量级的液滴(1皮升至10毫升)操控,并实现细胞离子通道、单个细胞到细胞聚集体的不同尺度操控,为微型机器人、类器官、组织工程和神经调控等重点前沿科技领域研究提供全新工具和方法,其应用前景广阔。 据了解,杜学敏团队从2016年开始在光-电智能材料和静电镊领域开展研究工作,基于前期工作基础,研究团队开发出全新的光-电镊。该光-电镊由两个核心元素组成:近红外激光光源和光-电转换器。 实验结果表明,研发团队提出的新型光-电镊展现出了卓越、稳定的光电转换性能,仅需每平方毫米2毫瓦的光照强度下即可产生0.26伏的表面电势,光照强度增加可增强光-电场,即便将表面介质厚度改变范围为1厘米至10厘米,电导率调整范围为1.16毫西门子每厘米至91毫西门子每厘米,其光电性能仍能保持有效。 “传统的光镊需要的光强度较高,大约为每平方毫米一千万毫瓦,会存在光损伤的问题,在微观尺度的调控可能会灼伤甚至杀死细胞。相比之下,新型光-电镊所需要的光照强度很低,通过高性能的光-电转换器产生的介电泳力操控物体,以避免光强度对生物样本的损伤。”杜学敏说。 值得关注的是,相比传统的光镊,该光-电镊所需光照强度低7个数量级,却能产生操控力高7个数量级,成功实现了不同材质(聚合物、无机物和金属)、不同相态(气泡、液体和固体)、不同形状(球体、长方体、螺旋线)和活鱼卵等物体的非接触、普适性、程序化操控。