《Twist Bioscience以更长的基因增强了基因产品的功能,并提供了其应用程序编程接口》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-01-21
  • 美国东部标准时间1月7日上午8点30分,旧金山(商业通讯社)- twist Bioscience Corporation(纳斯达克代码:TWST),一家通过提供高质量的合成DNA使客户获得成功的公司,今天宣布它已经扩大了其产品组合,以行业领先的价格提供长达5千碱基(5kb)的基因。此外,Twist正在为所有订购基因的客户提供其应用程序编程接口(Twist API或TAPI)。

    Twist的首席执行官兼联合创始人埃米莉·m·勒普罗斯特博士说:“我们致力于不断改进和扩大我们的产品线,以满足越来越多客户的需求。”“在过去的一年里,我们已经为银杏生物工厂提供了多达5kb的基因,我们有信心能够精确、高效、无性系完美地制造出数量可观的这些基因。”通过以每对碱基对0.15美元的颠覆性价格提供长基因,周期为15至25天,我们将继续努力,通过将DNA制造商转化为DNA买家,提高我们的市场份额。

    Twist应用程序编程接口(TAPI)现在可用于基因排序

    Twist除了在长度上扩大其基因供应外,还宣布了Twist应用程序编程接口(TAPI)的可用性,可以对合成基因、寡聚体和基因片段进行排序。TAPI允许客户将其内部软件系统与Twist的设计和业务系统无缝集成。重要的是,TAPI提供了Twist在线订购门户的功能,包括序列合成分析、密码子优化、车牌地图下载以及从下单到发货的全面订单跟踪过程。这些特性可以为客户节省时间和资源。

    Leproust博士继续说道:“一旦TAPI只对我们最大的客户开放,我们就向所有对设计和构建基因及其通路感兴趣的客户开放了TAPI,同时可以直接安全地传输数据。”

    关于克隆完美合成基因

    Twist应用其专利DNA合成技术,可生产长度可达5千碱基(5kb)的DNA链。客户订购合成基因进行广泛的研究,包括医疗、农业和工业化学工业的产品开发,以及学术研究中的大量应用。事实上,所有的研究和开发都需要反复试验和犯错,而研究机构也需要多种基因变异来找到实现其目标的DNA序列。Twist提供完美的Twist或客户载体克隆基因。欲知详情,请按此。

    关于Twist生物科技公司

    Twist Bioscience是一家领先的快速成长的合成生物学公司,开发了一个颠覆性的DNA合成平台,将生物工程工业化。该平台的核心是一项专利技术,它开创了一种通过在硅片上“书写”DNA来制造合成DNA的新方法。Twist公司正在利用其独特的技术生产一系列基于dna的合成产品,包括合成基因、下一代测序(NGS)制剂工具以及用于药物发现和开发的抗体库。Twist也在寻求DNA数字数据存储和生物药物研发方面的长期机会。Twist生产的产品适用于医疗、化工、农业和学术研究等多个行业。

    关注我们的Twitter | Facebook | LinkedIn | YouTube

    这份新闻稿载有前瞻性的声明。以外的所有声明语句的历史事实所包含前瞻性陈述反映当前的信念和期望的管理依照安全港的规定1995年私人证券诉讼改革法案,包括,但不限于,扭转生物科学的期望关于增加市场份额和精确制造可伸缩能力完美的克隆基因的数量。此类前瞻性陈述涉及已知和未知的风险、不确定性以及其他可能导致Twist Bioscience的实际结果、表现或成就与前瞻性陈述所表达或暗示的任何未来结果、表现或成就存在重大差异的重要因素。这些风险和不确定性包括吸引新客户、留住和增加现有客户的销售能力的风险和不确定性;快速变化的技术和合成生物学领域的广泛竞争带来的风险和不确定性,可能使产品扭曲,使生物科学发展过时或缺乏竞争力;保留重要客户的不确定性;第三方指控侵犯专利和专有权利或试图使扭曲的生物科学专利或专有权利无效的风险;扭曲生物科学的专利权的风险可能不足以保护其技术。进一步描述的风险和不确定因素,可能导致实际结果不同于那些表达在这些前瞻性陈述,以及扭转生物科学相关的业务风险一般来说,看到扭转生物科学的风险因素提出扭转生物科学的年度报告形式的10 - k截至9月30日,2018年提交给美国证券交易委员会(sec) 12月20日2018年。本新闻稿中所包含的任何前瞻性声明仅在本协议签署之日有效,Twist Bioscience明确声明,不承担因新信息、未来事件或其他原因而更新任何前瞻性声明的义务。

相关报告
  • 《农业掀起“基因”浪潮,基因编辑和转基因技术商业化提速》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-11-12
    • 全球农业颠覆式发展必然少不了农业生物技术的创造性力量。 农业生物技术是指运用基因工程、发酵工程、细胞工程、酶工程以及分子育种等生物技术,改良动植物及微生物品种生产性状、培育动植物及微生物新品种、生产生物农药、兽药与疫苗的新技术。广义基因工程技术中的基因编辑和转基因技术在农业领域的应用备受关注。 说到基因编辑,其近年来的发展可谓是叱咤风云,在医学领域大放异彩不说,又屡次角逐诺奖。当走在科技前沿的基因编辑遇上正在追赶科技的农业,它们之间所发生的奇妙化学反应将为农业带来全新的发展机会。例如:早在2013年,以CRISPR/Cas9系统为标志的第三代基因编辑技术就取得了决定性突破,打破了常规育种瓶颈,成为基因编辑主流技术。 与基因编辑一样,转基因自被人们认识以来便是万众瞩目。根据国际农业生物技术应用服务组织2019年9月发布的《2018年全球生物技术/转基因作物商业化发展态势》报告,当年全球有26个国家和地区种植转基因作物,种植面积超1.9亿公顷,其中美国、巴西、阿根廷、加拿大和印度的转基因农作物种植面积占全球转基因作物种植面积的91%。 基因编辑和转基因技术在农业领域的应用 医疗和农业是基因编辑的两大重要应用领域。在农业方面,世界各地的研究人员利用植物和动物的测序来研究不同物种的基因组,进行农作物全品种基因测序将会推动农业发展,增加作物产量。 基因编辑技术不仅可以突破传统育种难以解决的遗传障碍,而且能实现特定性状的精准改变,颠覆已有动物遗传改良技术路径和选育效率。伴随着基因编辑技术的不断改进及其在动植物上的广泛应用,农业领域的颠覆性变革悄然在进行。 1994年,Calgene推出第一个基因工程食物Flavr Savr番茄。1996年,孟山都公司(Monsanto)推出第一批基因修饰农作物,很快这些基因修饰食品占据了市场。2016年初杜邦宣布,在2020年即将诞生一款新的玉米品种,将是史上第一例商业化的基因编辑农作物。2018年,美国食品药品监督管理局(FDA)发布新规,撤销对CRISPR作物的严格管控,鼓励CRISPR植物的种植试验。 与基因编辑有所不同,转基因技术能将一个生物体中结构明确、功能清楚的基因取出,让其在另一个作物体内发挥作用,实现基因在不同物种间的重组。这项新技术不仅更精准,而且利用其他物种的基因资源能极大扩充作物自身的基因库,使作物具备抗虫、耐除草剂、抗旱等特性。动物转基因技术则在提高畜禽生产性能、改善畜产品品质、提高畜禽抗寒抗病能力等方面应用广泛。 作为现代生物工程的一个重要手段,许多发达国家和发展中国家都在大力研究开发转基因技术。我国转基因作物研究始于20世纪80年代,是开展这项新技术研发最早的国家之一。 2008年中央一号文件首次提出,启动转基因生物新品种培育科技重大专项。当年10月党的十七届三中全会决定强调,实施转基因生物新品种培育科技重大专项,尽快获得一批具有重要应用价值的优良品种。随后出台的《国家粮食安全中长期规划纲要》也对转基因生物新品种培育科技重大专项提出明确研发方向。 跟随国家政策的指引,行业内的头部企业逐渐开始了在农业生物技术领域的探索,例如华大基因和隆平高科。 华大基因:推进动植物育种进程 华大基因成立于1999年,是全球领先的生命科学前沿机构,拥有多种平台,可以在DNA水平、RNA水平、表观遗传学等各个水平对动植物各种表型性状进行全方位的研究,并结合质谱技术开展蛋白质组水平的研究,利用贯穿组学深度解析动植物界的科学问题,检测与人类息息相关的农艺性状相关基因、研究动植物进化、抗病、抗逆、生殖发育等生理机制,为育种挖掘多样性的遗传资源,为推进动植物育种进程奠定坚实的理论基础。 其产品RNA-Seq主要用于系统进化/物种起源、生长发育、抗逆及致病机理研究、生物标记(分子育种)等研究。此外,华大基因还在利用自主DNBSEQTM测序技术的基础上,自主开发了双链环化的文库制备新方法,可快速高效获取真实的甲基化水平数据,以及动植物育种、人类健康与疾病等应用性研究。 华大基因基于公司领先的数据处理分析能力,丰富的科研项目经验,公司在科研方面也取得了一系列突破性成果。2019年,公司与多家国内外科研机构在全球顶尖学术期刊上发表了50篇农业基因相关科研论文。其中,2019年3月11日,与芝加哥大学、亚利桑那大学等团队合作在Nature Ecology & Evolution上发表了迄今为止最大的水稻高质量新蛋白质数据集的成果。2019年5月,与华中农业大学在Nature Genetics上发表迄今为止质量最高的热带玉米参考基因组,并公布了首份玉米结构变异图谱。 华大基因于2019年5月与碧桂园农业控股有限公司签署股权转让协议,将其持有的华大农业80%股权转让给碧桂园。碧桂园布局农业全产业链条,着力打造科技型、平台型、国际型农业。 隆平高科:高位布局玉米转基因品种开发 隆平高科自设立以来一直以现代种业产业化为发展方向,利用现代生物技术,主要从事农作物高科技种子及种苗的研发、繁育、推广及服务。 在生物技术板块,隆平高科在华智生物技术有限公司、隆平高科长沙生物技术实验室、隆平高科生物技术(玉米)中心等分子育种平台基础上,投资设立湖南隆平高科第三代杂交水稻种业有限公司,聚集新一代杂交水稻技术开发,投资杭州瑞丰生物科技有限公司,成立隆平生物技术(海南)有限公司,高位布局玉米转基因品种开发,进一步提升公司研发能力,巩固公司产品及科技领先优势,抢占新技术周期背景下行业竞争的战略制高点。 2020年1月21日,农业农村部公布了2019年农业转基因生物安全证书(生产应用)批准清单,其中包括隆平高科参股公司杭州瑞丰生物科技有限公司的转基因玉米瑞丰125,该玉米融合两个Bt抗虫基因,能有效控制我国玉米田的主要鳞翅目害虫,预期在延缓害虫抗性产生方面具有优势,所含抗除草剂基因是具有我国自主知识产权的创新型基因,可满足我国农民田间除草需求。此外,对目前入侵我国西南地区、黄淮海地区的草地贪夜蛾也具有一定的抗性。 作为行业龙头,隆平高科在传统研发和以转基因技术为代表的生物技术储备方面准备充足、能力叠加,将进一步巩固和提升其行业优势地位。 大北农:转基因大豆产品取得里程碑式进展 大北农集团主营业务有饲料、养猪、水产、疫苗、作物、农业互联网六大产业,拥有近20000名员工、1500多人的核心研发团队、120多家生产基地和300多家分子公司。其作物科技产业聚焦生物技术、绿色良种、新型肥料、环保农药的创新研发与服务推广,为农民提供全产业链的种植科技服务。 2019年2月27日,大北农收到阿根廷国家政府的生产及劳动部正式书面通知,公司下属子公司北京大北农生物技术有限公司研发的转基因大豆转化事件DBN-09004-6获得阿根廷政府的正式种植许可。这是大北农转基因大豆产品在国际南美地区市场取得的重要里程碑式进展,也是大北农生物技术的研发和转化在国际南美地区取得的重大进展,也为大北农生物技术的市场化应用和经营拓展了较为广阔的市场空间。 行业发展空间巨大,创新企业步履不停 2019年12月30日,农业农村部科技教育司发布《关于慈KJH83等192个转基因植物品种命名的公示》,拟批准为192个植物品种颁发农业转基因生物安全证书目录,其中包括2个玉米品种和1个大豆品种,这是距2009年2个水稻1个玉米获得转基因生物安全证书之后,又有中国研究的主要农作物获得转基因生物安全证书。 国产转基因品种十年磨一剑,长时间沉淀的坚实基础将推动我国农业生物技术产业进入一个新的快速发展时期,未来发展空间巨大。在农业生物技术领域除了头部企业的探索,创新企业也加快了发展步伐。 康普森:动植物分子育种 北京康普森生物技术有限公司(以下简称“康普森”)成立于2011年,公司提供基于新型农业基因组技术的动植物分子育种、特色农业基因+以及现代化农业生产、现代设施农业整体解决方案。 2015年,康普森生物开始向农业产业化发展。第二年,为进一步推广基因组选择技术和产业化应用,康普森生物正式启动了产业联盟,在全国范围内先后发起了“猪基因组选育北京联盟”、“全国肉鸡全基因组选择育种联盟”、“畜禽良种产业技术创新战略联盟”等多个行业联盟,通过与不同机构合作,共同打造联合育种“产学研”院企合作平台,实现专注分子育种,用“大数据解决选育问题”的目标。 2018年,作为康普森生物的全资子公司,康普森农业推出了个性化育种方案制定、畜禽基因组选育、选配策略制定、遗传疾病评估、功能基因检测等一站式育种服务,为科研工作者和育种企业提供了多项个性化服务,这对培育自主品种、打造民族品牌、提升核心种源自给率、推动畜牧基因组实现产业化有着重要作用。 古奥基因:基因组选择育种平台研发 武汉古奥基因科技有限公司(以下简称“古奥基因”)是一家以二代和三代高通量测序、生物信息分析、交互分析报告、多组学知识库和基因组选择育种平台研发为技术核心的高科技公司。 古奥基因自成立以来,一直致力于布局基因数据产业,从数据产出,到分析,到深度挖掘,基因应用。目前公司已建立形成“三中心两基地”,包括武汉古奥基因(总部研发和运营中心)、重庆揩火基因(大数据中心)、嘉兴古奥(分子育种中心)、牡丹江大豆育种基地、东西湖育种基地。 其产品古奥基因组选择育种平台是通过整合和开发全基因组关联分析、全基因组选择育种、育种模拟等方法,开发的一个全自动化的育种分析平台,包含了数据管理,图表可视化,在线分析等一系列功能模块。平台利用配置好的育种分析方案进行全自动育种分析,使得育种研究人员在不需要底层生物信息和数量遗传算法的基础上,真正实现基于基因大数据的动植物品种选育方案设计。 当然不只是我国农业领域在推进基因工程技术的创新应用,自2019年开始,一些国家及地区政府进一步释放信号,鼓励转基因农作物种植和应用。 在欧洲,英国首相约翰逊提出要“解放”英国的转基因产业,欧盟委员会宣布批准10种转基因产品在欧盟上市;在美洲,美国总统要求联邦政府相关监管机构简化、加快农业生物技术产品的审批流程,从而加快农业生物技术新产品的审批、降低开发者的成本、鼓励对转基因农作物进行更多投资;在澳洲,南澳大利亚州政府决定从2020年起解除该州除袋鼠岛以外有关种植转基因作物禁令,至此澳大利亚大陆所有州都取消了转基因作物种植禁令。 以下是国外几家在农业基因工程技术领域较有代表性的企业。 Indigo Ag:创建农业微生物基因组信息数据库 Indigo Ag成立于2014年,起初只是Flagship pioneering发起的100多家创业公司之一。但在经过几年的发展以后,它已然成长为一家900多人规模的企业,累计融资金额超8亿美元,估值更是超过了35亿美元。 Indigo Ag利用人工智能算法和机器学习技术,创建了一套农业微生物基因组信息数据库,分析出对植物健康最有帮助的微生物,可以抵御农作物病虫害,增加营养摄入量以及水分利用率,继而提升产能,让农民获得可持续的收成。 目前,该公司的种子处理技术主要用于五种作物——玉米、小麦、大豆、水稻和棉花。2018年,indigo的玉米每英亩产量比传统种子高出10%以上,小麦产量提高了近15%。 Benson Hill:改良作物基因 Benson Hill成立于2012年,是一家集云计算、大数据分析和植物生物学为一体的农业科技公司,多年以来利用其建立的CropOSTM生物信息平台,帮助各大公司改良作物基因,提高作物品质,一直以来受到业内的广泛好评。 其最新研发的种子品种在保证农民产量的同时,还具备最优的蛋白质和油脂组成,可以提高饲料消化效率、降低胰蛋白酶抑制效果,并具备小众市场和大众终端用户所追求的其余品质。其中一个产品是eMerge Genetics的产品组合,这是一个国际知名的非转基因大豆品种组合,有资格通过非转基因认证并在包括欧盟在内的所有市场销售,极具推广潜力。 行业产业化前景诱人,技术壁垒问题仍待解决 《2020年农业农村科教环能工作要点》指出,要着力提高科技创新的产业贡献度着力强化科技扶贫,加强基础前沿储备,面向国际前沿,围绕生物种业、智能农机装备、数字农业等领域,强化基因编辑、合成生物学、大数据、人工智能等基础前沿研究,增强原始创新能力。继续组织实施转基因生物新品种培育重大专项,进一步强化生物育种技术研究和产品熟化,推进优良新品系遴选和第三方验证,夯实产业化基础。 在政策引领下,随着技术研发的深入,基因编辑的技术优势不断凸显,并逐渐转化为产业优势,已经在动植物育种方面显示了广阔的前景。据美国Kalorama Information公司估计,2025年基因编辑及其相关供应市场规模有望突破50亿美元。华泰证券研究报告则预测到2030年,我国转基因种子市场规模有望达到460亿元,利润总额有望达到157.8亿元。 尽管随着人们逐渐对基因编辑和转基因技术认知增多,基因工程技术产业化也与市场需求结合紧密,产业化前景诱人,但其产业化仍然受到技术壁垒、编辑效率等瓶颈问题的制约。但不论如何,基因工程技术将成为作物育种和农业生物技术研发过程中的一个重要工具,并推动农业领域的一场革命,未来行业中可能诞生千亿市值的龙头种企。
  • 《基因技术应用乱象及潜在风险》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-18
    • 基因技术是生物工程中一种基于基因的技术,在人口健康、农业育种和工业生产等方面发挥了重大作用。基因技术的发展历史可以追溯到1953年,沃森和克里克发现了DNA双螺旋结构,开启了分子生物学的大门,奠定了基因技术的基础。此后,由基因工程衍生出的基因技术包括基因检测、基因修复、基因编辑、转基因技术等,其中基因编辑技术是当前发展最为迅速的一项新兴基因技术。目前主要的基因编辑技术有锌指核酸酶技术(ZFN)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶(Meganucleases)和成簇间隔短回文重复(CRISPR)等,其中CRISPR技术是目前最新也最为通用的基因编辑技术,其成本低廉,简单易用,只需花费60美元就可以购买到CRISPR技术所需的基本材料,网络上甚至有免费获得这些材料的途径。 基因技术广泛应用于微生物基因编辑、植物基因编辑、动物基因编辑和人体基因编辑等领域。目前研究最多的是基因技术在人类疾病治疗中的应用,其最终的目的就是通过改变基因结构来达到疾病的预防和治疗。美国再生医学联盟的统计显示,仅2017年第一季度,全球基因疗法领域投资超过10亿美元。CRISPR已经在人类和其它哺乳动物细胞中成功进行了位点特异性的DNA切割,未来有望解决一些人类相关疾病;在商业上,已经用于多种转基因农作物中,利用该技术可以将转基因作物的相关外源基因,在发挥作用后敲除,有望使转基因食品更加安全。 基因技术存在的风险 由于基因技术能改造出新的生物体,因此存在一定的误用和滥用风险,主要集中在伦理和安全上。2017年8月,英国广播公司在其网站发表文章,列出了2050年前人类将面临的十大挑战,其中基因编辑技术位列首位,认为该技术会给人类带来伦理等诸多方面的挑战。 技术自身存在风险 作为一项技术,基因编辑等新兴技术还存在不完善和不成熟之处。2017年8月,CRISPR发明人之一、华人科学家张锋团队指出,不同个体间存在巨大的遗传变异,这些变异可能会影响CRISPR的精确编辑。此外,基因编辑技术目前走向临床应用面临最大的问题是其脱靶风险,如果基因编辑过程中出现脱靶可能引发其他疾病或健康风险。 可能存在伦理问题 基因技术在临床上的应用引发了人们对伦理问题的担忧,目前伦理上争议较大的是人类胚胎基因编辑,不同国家对人类生殖细胞基因编辑态度不同。根据2014年一项研究显示,在全球39个国家的调查中,有25个国家反对人类生殖细胞基因的修饰,并通过法律来执行这项禁令,其中包括了加拿大、澳大利亚、英国以及法国等。另有4个国家已通过文件禁止这类研究进行,但未立法,这其中包括中国。包括俄罗斯在内的9个国家对人类生殖细胞基因修饰的态度不明确,而美国限制人类生殖细胞基因修饰。 对国家安全造成严重影响 基因技术可以用来发明新的病原体,如果这些病原体发生泄露,或是被用作生物武器,将会造成严重损失。站在国家的立场来看,一种新的技术出现时,它总会想到这种技术不好的一面,可能有什么负面的影响或者潜在的威胁,可能会就此做出一些防御性战略。为此2016年2月,美国情报界年度全球威胁评估报告中,将基因编辑技术列入“大规模杀伤性与扩散性武器”威胁清单。 对基因改造产品监管的争议 基因技术在农业上通常用于植物或动物育种过程的改进。基因改造农产品的潜在风险包括:对病害、虫害、环境胁迫的抗性或敏感性增加,毒性或致敏性的潜在变化,以及非靶标影响等。目前在基因产品的监管等方面还存在不同的争议,下面列举几个具体的例子: 无角的奶牛。与大多数肉牛不同,奶牛通常有角。由于人类每天都与有角的奶牛接触,牛角会带来不小的风险,所以大多数奶牛幼年时要去除牛角。美国加利福尼亚大学戴维斯分校的研究人员利用基因编辑技术关闭了奶牛体内编码角的基因。这种表现型只是将一些自然界本可以发生的事情重复了出来,因为自然界中有一些牛天生就是不长角的,而有人却觉得这是一件了不得的大事。依据美国《联邦食品、药品和化妆品法案》,美国食品药品管理局(FDA)指出,这种基因编辑的动物要像新的兽药一样,必须经受多年的审查,并遵守药物批准的要求。针对这种情况,畜牧业已经开始反抗,要求国会禁止FDA的做法,并将其权力移交给美国农业部(USDA)。 抗褐变的蘑菇。美国宾夕法尼亚州立大学的研究人员利用基因编辑技术关闭了蘑菇中引起褐变的酶的基因。这种所谓的“失效”突变模仿了自然界中经常发生的过程,这种情况产生的结果是完全无害的。它与自然界存在的金黄色葡萄或是小型葡萄完全一样,都发生了“功能失活”突变,而这两种葡萄已经被人类安全食用了许多年,并未发现致病效应,也不需要事先获得政府的批准。这种蘑菇实际上已经过USDA仔细审查,认为不值得进一步审查——事实上并不像许多媒体报道的那样“逃脱”了监管。 目前,迅猛发展的基因技术正在给我们的生活带来巨大的变化,在享受先进科学技术带来的种种福利的同时,我国在核心技术的创新以及相关的伦理学和法律法规监管等方面还应进一步加强,以确保这一先进技术得到正确而有效的应用。