《前沿 | 金属线波导提供无与伦比的太赫兹网络效率》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-03-04
  • 加拿大魁北克大学国家科学研究所 (INRS) 的一个研究小组通过直接设计金属线波导的线表面实现了宽带太赫兹 (THz) 信号处理。该方法允许在金属线上直接蚀刻多尺度结构的布拉格光栅,而无需引入额外的材料。相关研究发表在《Nature Communications》上。

    当与各种波导设计相结合时,INRS 团队的方法可以提供一个结构简单的平台,用于在太赫兹区域实现卓越的信号处理能力。研究人员报告说,这是第一次将这种方法应用于太赫兹频率。该团队由罗伯托•莫兰多蒂领导。

    “通过在金属线上直接雕刻具有多尺度结构的精心设计的凹槽,我们可以改变反射或传输的频率——即太赫兹布拉格光栅——而无需在波导中添加任何材料,”研究员董俊良说。

    这种方法之所以成功,是因为金属线波导中的太赫兹制导是基于太赫兹表面等离子体激元(SPP)沿金属-空气界面的传播——这对金属表面的条件极为敏感。金属线波导结构简单,易于弯曲,与电缆的亲和力使连接高效且简单。

    图1,参与用于宽带太赫兹信号处理和多路复用的金属线波导研究的科学家,左起:Roberto Morandotti, Junliang Dong, Giacomo Balistreri, and Pei You。该团队设想其平台可应用于未压缩超高清视频的多通道传输,以及太赫兹网元之间的超高速短距离数据传输

    作为概念验证,研究人员展示了一种称为四线波导 (FWWG) 的多功能金属线波导拓扑。 FWWG 几何结构支持偏振分复用 THz 信号的低损耗和低色散传播。

    FWWG 可以维持两个独立的正交极化模式。由于这些模式不会相互干扰,因此 FWWG 能够充当宽带偏振分复用器。通过将金属线上的布拉格光栅集成到 FWWG 中,研究人员展示了对偏振分复用 THz 信号的独立操作。

    FWWG 设备可以提供一种在波导中实现偏振分复用的方法,同时在宽太赫兹频率范围内处理多路复用信号。研究人员认为,它可以支持对频率和极化复用的信号通道进行独立操作,并可以提高太赫兹系统的容量,最终在未来的太赫兹网络中实现约 Tb/s 的数据速率。

    “我们的设备代表了第一个太赫兹波导架构,采用新的金属设计,支持偏振分复用,” Morandotti说。“特别是,实现如此复杂的信号处理功能的能力——即独立处理多路复用的太赫兹信号——在其他地方从未实现过。”

    此外,在金属线波导中操纵太赫兹脉冲传播的方法可以激发新的方法来提高未来太赫兹网络的容量和频谱效率,例如,为 6G 网络中的“全息消息传递”提供一条路径。另外,为实现宽带太赫兹信号处理提供了一个通用平台,例如,它可能导致未压缩的超高清视频的多通道传输,设备间超高速、短距离的数据传输,以及芯片到芯片的通信。

相关报告
  • 《材料系统使用石墨烯和金片产生太赫兹波》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2021-01-04
    • 2020年12月29日,德国德累斯顿-德国-西班牙研究小组开发了一种基于石墨烯的方法,以提高科学家产生太赫兹脉冲的效率。在该系统中,研究人员用金属片状结构(特别是金片状)涂覆了石墨烯片。 目前,科学家使用加速器设备和大型激光器来产生太赫兹波,通常很复杂。新材料系统的功能使其能够与现有的半导体技术兼容,从而可以有效地从千兆赫兹频率过渡到太赫兹频率,并且在执行这种过渡的电流源和转换器上具有更高的效率。 尽管石墨烯是已知的倍频器(当低太赫兹频率范围[0.3至0.7 THz]的光脉冲照射2D碳材料时,它们会转换为更高的频率),但太赫兹脉冲的有效生成依赖于极强的输入信号。为了可靠地生成此类信号,在全尺寸下运行的粒子加速器或大型激光系统使该方法不适用于许多应用。这些包括电通信系统,如5G。 图1. 超薄金薄片可大幅放大底层石墨烯层中的传入太赫兹脉冲(红色),从而实现高效的倍频。 为了开发一种场强度大大降低的材料系统,研究人员在石墨烯上涂了金薄片。金薄片的功能与天线非常相似,可放大石墨烯中传入的太赫兹辐射。加泰罗尼亚纳米科学与纳米技术研究所(ICN2)的Klaas-Jan Tielrooji表示,在物理系统中,该特性在石墨烯暴露于薄片时会提供非常强的电场。 该团队通过在玻璃载体上涂覆石墨烯层,然后在石墨烯上气相沉积超薄氧化铝层进行绝缘来测试其概念。然后,研究人员添加了一个金条晶格。低太赫兹范围内的光脉冲会击中材料,使入射辐射的频率倍增,从而使团队能够检测和分析过程的有效性。 “与未经处理的石墨烯相比,足够弱的输入信号足以产生倍频信号,” HZDR TELBE太赫兹设施的负责人Sergey Kovalev说。最初产生一个倍频信号所需的场强的十分之一足以使研究人员观察到倍频。转换后,脉冲功率比使用其他方法的系统强1000倍以上。 研究人员报告说,扩大金薄片的宽度并减小裸露的石墨烯层的覆盖面积可增强该过程及其效果。团队成员还展示了将输入频率提高到9倍的能力。 这种新材料增加了纯电信号从千兆赫兹过渡到太赫兹的可能性,这意味着工作量大大减少。 HZDR辐射物理研究所的Jan-Christoph Deinert表示,它可以被集成到芯片上。 研究人员说,太赫兹范围及其系统支持材料研究以及传感器和检测器的应用。  
  • 《超薄太赫兹电磁波吸收器面世》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-13
    • 太赫兹波有望成为第六代(6G)移动通信网络的载波。不过,为提高信号传输精度,需要吸收器消除噪音干扰。日本东京大学等机构研究人员成功研制出迄今最薄的电磁波吸收器,其能吸收0.1—1太赫兹频率范围内的波。这一成果有望促进6G技术的发展和应用。相关论文发表于新一期美国化学学会《ACS应用材料与界面》杂志。 太赫兹波指频率在0.1—10太赫兹范围内、介于微波和红外线之间的电磁波。研究显示,6G通信可能覆盖的频段与太赫兹频段高度重叠。但太赫兹波由于频率更高、波长更短,更容易受到噪音的干扰,难以实现清晰且安全的信号传输。电磁波吸收器可抑制电磁波的传输或反射,从而提升通信精度。 研究人员此次开发出的吸收器由名为λ-五氧化三钛(λ-Ti3O5)的导电金属氧化物和绝缘二氧化钛涂层组成,厚度仅为48微米,不足人头发丝直径(平均约100毫米)的一半,是已知最薄的电磁波吸收器。 研究人员表示,目前只有针对0.3太赫兹以下电磁波的吸收器投入商用,最新研制出的吸收器针对0.1—1太赫兹频率范围,大大拓展了未来有望商用的太赫兹波的范围。0.1—1太赫兹波有望在无线通信、非接触式生命监测系统、断层成像质量检查扫描系统、危险物质安全检测等多个领域“大显身手”。 新研制的吸收器体型纤薄,能整合在紧凑设备内使用,所用材料钛也并不稀有,具备大规模生产的潜力。此外,新吸收器还具备耐热、耐水、耐光和耐有机溶剂等特性,能在室外甚至恶劣条件下使用。