《类铍钙离子的双电子复合实验研究获进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: feifei
  • 发布时间:2018-12-11
  • 中国科学技术大学联合中国科学院近代物理研究所及德国吉森大学、英国斯特拉斯克莱德大学和莱彻斯特大学等多家单位的科研人员开展了类铍钙离子的双电子复合实验,首次高精度地测量了类铍钙离子的电子-离子复合速率系数,并结合最先进的AUTOSTRUCTURE计算,除测量到常规的双电子复合共振之外,还观测到俘获一个电子同时激发两个内壳层电子的三电子复合过程,以及处于2s2p 3P0亚稳态离子的双电子复合。

相关报告
  • 《国家纳米中心红外非易失性存储器研究获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:liuzh
    • 发布时间:2018-08-08
    •   二维层状半导体材料是层内以强的共价键或离子键结合而成,而层与层之间依靠弱的范德华力堆叠在一起的一类新型材料。通常其表面没有化学悬键,这个特征使载流子免于表面粗糙度及陷阱态的影响,从而能够获得较高的载流子迁移率。但超薄的特性导致其具有小的吸收截面,二维的尺寸限制和低的静电屏蔽导致二维材料具有大的激子束缚能,而且强烈的库伦相互作用也会通过俄歇过程增加光生电子空穴在缺陷处的复合。这些弊端都限制了二维材料在光电探测上的应用。中国科学院国家纳米科学中心何军课题组将范德华外延法应用于光电性能优异的非层状硫族半导体材料二维化生长,从六方晶体到立方晶体结构,从单组分到复杂的三组分体系,分别实现了Te、Pb1-xSnxSe、PbS等具有不同晶体结构的非层状材料的二维化及阵列结构(Advanced Materials. 2017, 29, 1703122;Advanced Materials. 2016, 28, 8051-8057;Nano Letters. 2015, 15, 1183-1189)。在此研究基础上,为了解决二维层状材料的弊端,并利用非层状硫族半导体高效的光吸收性能。通过范德华外延实现了边缘接触的层状非层状范德华异质结:硫化铅/二硫化钼(PbS/MoS2)和硫化铅/石墨烯(PbS/graphene)异质结(Nano Letters. 2016, 16, 6437-6444; Advanced Materials. 2016, 28, 6497–6503)。窄带隙的PbS与二维材料形成内建电场使光生电子空穴空间分离,有效阻止了二维材料中光生电子空穴的快速复合。另一方面二维材料的高迁移率极大地提高了光电导增益,实现了高性能的红外探测器件的制备。   在二维半导体材料可控生长及其电子和光电子性质的研究基础上,何军课题组进一步实现了一种基于二维材料MoS2/PbS范德华异质结的红外非易失性存储器。该器件能把红外光信号高效地转换为电信号,而且能实现稳定存储。这种器件不仅展现出了极高的红外光探测性能:光响应度超过107安培每瓦,光增益超过1011,探测率超过1015琼斯,而且具有极其稳定的光存储性能,存储时间超过104秒。此外该存储器可以通过脉冲栅压擦除,经过2000次循环仍能保持稳定。结合理论模型与实验数据,研究人员发现光存储机制来源于PbS中光生电子注入MoS2,界面势垒ФR阻止MoS2里面的电子反向注入PbS。光生空穴被局域在PbS价带或者缺陷产生光栅作用,诱导电子浓度大约2.4×1024 cm-3,出现光存储。加脉冲栅压MoS2电子浓度增加,MoS2中电子通过量子遂穿注入PbS与局域空穴复合,光存储被擦除。当脉冲栅压从10增加到100V,栅压诱导的电子从0.6×1024 增加到2.5×1024 cm−3 ,这个值跟光栅诱导的电子浓度非常接近。以上实验观测与理论模型(随脉冲栅压增加MoS2中注入到PbS中的电子浓度增加)相一致。850, 1310 和1550 nm 这三个波段是光纤损耗比较低的波段,被广泛应用于光纤通讯,该光存储器能有效将这三个光纤通讯波段的光信号转换为电信号并实现稳定存储。这种应用于红外通讯波段的非易失性存储器目前是首次报道。这项研究成果为光电子存储以及其逻辑电路提供了新思路,相关研究成果日前以Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures 为题发表在science advances(Sci. Adv. 2018; 4 : eaap7916)上。   该研究工作得到了国家相关人才计划、科技部重大科学研究计划等的支持。
  • 《中国科学院精密测量院在液体太赫兹波产生机制的理论研究方面获进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。 近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的液相体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。 近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。 上述成果是卞学滨团队在液相强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。