《生物质气化发电多联产技术在生物质能领域意义重大》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-03-04
  • “生物质气化发电多联产技术”在刚刚过去的2018年可谓是名声大噪,它是国家林业和草原局首届科技成果发布会的五大成果之一,并获得了2018年梁希林业科技进步一等奖、江苏省科技进步一等奖等。南京林业大学材料科学与工程学院教授、博士生导师周建斌先生为大家讲述他率领的团队在国内外首创研发的“生物质气化发电多联产技术”。

    生物质气化多联产的原理

    生物质气化发电联产炭、热、肥技术”就是以农业、林业加工剩余物(秸秆、稻壳、果壳、林业三剩物等)为原料,通过热解气化的技术同时转化成可燃气、生物质炭、生物质肥,此技术在不需要外加能源和其他任何添加剂、化学药品、助剂及催化剂的条件下,实现了生物质的绿色、高效、高值化利用。气体产物即可燃气直接用于发电或替代煤烧锅炉供热、固体产物即生物质炭根据原料不同可用于生产高附加值的活性炭、工业用炭、机制烧烤炭、炭基肥料等,生物质提取液经回收后用于生产液体肥料。

    生物质不如太阳能、风能出名的原因

    由于能源危机和环境污染问题,我国以及世界各国都重视清洁能源的发展,生物质能源利用技术有了一定的发展,但是没有达到预期的规模或是影响,有以下几方面原因:

    第一,大家对生物质的认识上不足或者错误,比如我国有18亿亩耕地,每年有10亿吨左右的秸秆,能源领导、学者和企业家都认为生物质太少,担当不起能源的重任,甚至认为是不足挂齿的!可是中国有46亿亩林地,60亿亩草地。被遗忘的生物质(城市木废料)主要包括:建筑废木材、旧城改造、大件废家具、园林绿化枝桠材等,南京市5000吨/天。 据估算地球上每年生产的生物能总量达1600-1800亿吨(干重),相当于目前世界总能耗的5倍以上。

    第二,在国家层面(包括发达国家),由于之前投入了大量资金,但没有达到预期的收益,让很多部门失去信心,相关政策实施的连续性不够,导致生物质能源整体的发展比较缓慢。

    第三,对生物质的特性,例如较为分散难以收集,秸秆类的季节性及能量密度低等认识不足。

    生物质气化多联产的优势

    针对传统的生物质气化、生物质炭等行业长期存在的产品单一、废水废渣污染(国内外所有教科书、专著、文章和专利包括工程项目)、生产规模小且连续稳定性差、经济效益不佳等突出共性问题,于2002年开始在世界上首创了生物质气化多联产技术并产业化应用。

    这项技术得到了电力、能源、林化等多个行业内多位院士的高度评价,改变了传统生物质气化(能源)、生物质炭、生物质肥等行业的产品单一、经济效益不显著、环境污染大等问题,在技术和产业的颠覆性创新主要体现在以下四个方面:

    (1)颠覆了传统的生物质气化(能源)历史,不仅有生物质能源,还可以生产生物质炭、肥料!

    (2)采用生物质气化热燃气-蒸汽联合循环发电关键技术,在国内外首次解决了生物质燃气净化和焦油处理的两大气化技术世界性难题,并有效地解决了气化发电的经济性、规模性、自动化及系统的可靠性、稳定性和标准化问题!

    (3)开创了活性炭生产技术的新纪元,颠覆了传统的活性炭生产历史,不仅不需要外加能源,在生产活性炭过程中还可以发电、供热、产肥料!

    (4)颠覆了几千年的世界烧炭的历史,在生产炭的同时还可以发电、生产肥料!

    (5)使用炭基肥和生物质醋液肥助推国家肥料和农药的零增长,甚至可以直接减少肥料用量10-30%,同时修复退化、板结、酸化和污染的土壤,使我国山更青、水更绿、地更沃、食品更安全!

    生物质气化多联产的发展前景

    这项技术使农林废弃物吃干榨净,能够产生发电、热水、活性炭、工业用炭、机制烧烤炭、炭基肥、液体肥等多种产品,完全颠覆了直接燃烧发电、单一产出的模式,具有广阔的发展前景:

    第一本项技术的良好经济效益,是传统生物质能源、生物质炭、生物质肥效益的3倍。

    第二同时具有优越的环境效益,由于生物质中的大部分碳、氮、硫元素保存在生物质炭中没有排放到大气中,不仅实现了吃干榨净和零排放,还可以生产多种有利于生态安全的绿色电能、绿色活性炭、绿色肥料。

    第三对我国发展绿色能源和节能减排有重要作用,实现了能源(发电或者供暖)从高排放→低排放→零排放→负排放(CO2、NxOy、SO2固定在生物质炭中)。这对我国节能减排、能源结构调整将产生重要国际影响。

    “生物质气化发电多联产技术”的实施和推广,将使我们的天更蓝、水更清、食品更安全,是实现国家肥料和农药的减量并助推国家绿色、循环、可持续发展的必经之路。为世界开启利用植物生物质能源这一巨大的能源仓库,提供了一条切实可行的发展之路,从此绿色清洁能源的获得可以实现循环再生、高效稳定,在生物质能源利用这个领域具有划时代的重大意义。

相关报告
  • 《生物质能直燃发电技术展望》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-08-29
    • 针对生物质能资源客观存在的不利现状及生物质能直燃发电技术面临的技术难题,生物质能直燃发电行业技术探索可主要从燃料加工技术优化、燃烧发电技术优化、智能控制水平提升等方向着手,最大程度规避资源能量密度低、有害元素含量多等特点,提升技术水平。 优化燃料加工技术 生物质能热电联产的规模化、高效化发展离不开生物质燃料的规范化、统一化生产。生物质原料收集后、燃烧前的预处理工作意义重大。生物质原料品种繁杂、能量密度低、水分大,不经处理直接燃烧,不利于锅炉、汽机等主设备稳定运转,不仅发电效率低,而且对设备损害极大。理想的生物质燃料应该具有低含水量、高能量密度、形状规则等特点。为解决上述问题,可重点探索水分即时检测技术、快速干燥技术、成分即时检测技术、适应性压缩成型技术和标准化生物质燃料生产技术。 其中,压缩成型对生物质资源化利用意义重大。燃煤发电的稳定性很大程度来源于燃料性质的稳定和较高的能量密度,生物质燃料燃烧的不稳定主要也是来源于燃料性质的多样性和较低的能量密度。基于此,可考虑在有效获取生物质燃料水分、元素含量等重要参数的基础上,将不同的生物质原料通过适应性加工,获取物理形状、含水量、元素成分等统一高品质生物质燃料。目前,压缩成型技术和设备已取得一定成果,应在此基础上结合具体锅炉类型、燃烧条件等进行针对性改进,进一步提高生物质燃料的利用价值,对提高能源利用率、保障生物质发电设备健康稳定有积极作用。 此外,结合即时检测与压缩成型技术,实现对不同生物质原料的统一加工,将不同成分、不同形状的生物质原料,加工成高能量密度、成分统一的生物质燃料,便于标准化生产的实现。目前,生物质能直燃发电过程通常只是将生物质原料进行简单破碎甚至不进行处理就送入锅炉燃烧,导致上给料设备运转不畅、燃烧过程不易控制、温度不稳定、锅炉腐蚀严重,给安全稳定生产带来较大风险。基于上述影响,可在标准化生物质燃料生产技术的标准化、规范化方面着手,将燃料识别、燃料制备等多个过程加以改进优化,探索生物质燃料相关关键技术并加以整合联动,提高直燃发电工艺的生产效率。 提升热电联产效率 生物质能直燃发电工艺热电转换效率在30%左右,生物质能热电联产工艺可将能源转化效率提高至60%~80%。生物质能直燃热电联产过程中如能做到燃料充分燃烧、热量与循环水充分换热,控制燃烧条件使燃烧稳定无污染,各级换热过程热量损失降到最低,各阶段优质高效统一,可将生物质能热电联产的优势充分发挥,有助于绿色低碳生产流程的实现。 一是燃烧过程即时优化与调节技术。为使燃烧过程稳定,实现稳定的热量供应,同时避免氯元素造成的腐蚀,可在燃料元素成分、含水量等参数及时获取的基础上,对燃烧控制系统进行反馈,进而即时调整炉内进风、进料情况,以实现燃料性质与燃烧条件的对应统一,达到燃料充分、稳定燃烧、灰渣易排出、热量集中等目的,提高锅炉燃烧效率,保障安全稳定生产。 二是传热过程技术优化。热电联产的电力生产过程和热量供应过程中,传热效率直接影响生产效率,需加强流体力学与传热学的理论分析,提高发电过程、供热过程的换热效率。同时基于生物质燃料碱金属及氯含量高的特性,进行燃烧优化,规避燃烧产物中碱性物质、飞灰等的生成,解决腐蚀与结焦的难题,保障锅炉等主要设备的热量传递效率。通过改进锅炉、管道几何形状与布置,更换高效换热工质,增加余热回收装置等方式,提高能量利用效率,实现燃烧、发电系统的长周期安全稳定运行。 三是超低排放与灰渣综合利用技术。可通过在燃烧前增加燃料预处理工序,燃烧中添加辅助物、控制燃烧条件,燃烧后高效捕集污染物等方式,实现生物质发电过程污染物的超低排放或者零排放。燃烧前预处理可通过生物质液化、气化等化学性质优化过程实现污染元素的提前剥离,燃烧中可通过特定条件下的催化反应或者避开污染物生成的温度区间避免污染物的产生,燃烧后可通过催化反应、吸附等手段实现污染物的收集处理。同时生物质发电会产生大量灰渣,探索低成本的灰渣综合利用技术,变废为宝,降低污染的同时创造价值,提升资源利用率。 智能化机械化改造生产过程 智能化与机械化是工业发展的必然选择,实现高度智能化和机械化可以极大地提升生产效率、降低运维成本、降低人员伤亡风险。 一是全流程动态检测与自动调控技术。要从燃料收加储运到燃烧、排放、发电、供热各环节,构建智能监控系统,实现对质量、能量输入输出的动态监控,对工艺流程中压力、温度、流量等参数的实时反馈,并根据设定参数与即时参数的差异分析处理得到优化方案,反馈至调节系统,立即进行调整优化,实现工艺流程的即时最优化配置,打造智能电厂。要统筹硬件、软件需求,提高数据获取能力和传输反馈效率,同时通过大数据手段实现解决方案的及时获取,从而实现生物质能直燃发电系统的整体智能化升级。 二是全流程机械化设备改造。通过生物质能直燃发电各关键环节和设备机械化的实现,可有效弥补生物质燃料性质差、燃烧调整困难等劣势,助力生物质能直燃发电规模化发展。生物质原料收集后可通过相应设备的机械化处理得到高质统一的生物质燃料,根据不同原料的形态成分、燃烧特性研究常温常压下的生物质燃料成型机理,以简易、高效为出发点制造秸秆打包、压缩成型的一体化设备,实现从农田直接获得成型燃料。上给料系统机械化改造可依据生物质燃料特点和即时参数,根据产品需求实现定时定量的燃料供应。生物质发电废料处理方面可配套灰渣清理、再利用的一体化设备,避免产生污染的同时实现副产品的高效生产。开发生物质能直燃发电系统特色的检修、巡检机器人(12.940, 0.99, 8.28%),配备成像和基础检测功能,实现对高危场所的自动化巡视、参数检测。
  • 《德国和全球视角下的生物质能产业》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-20
    • 前言:生物质种类多样,属性各不相同,包括农业生物质,林业生物质以及废物生物质等,从这些生物质能的原材料到我们日常生活所需要的能源终端形式如电和热,生物质能供能厂都扮演了十分重要的能源转换功能,在上周的生物质能系列文章中我们对生物质能供能设备也做出了简要的介绍(常见的生物质能工业设施:生物质能发电厂,生物质能供热厂,沼气厂,生物质能热电联产厂,木材供热系统等),今天我们将立足于德国和全球视角,从市场与产业链的角度对生物质能供能领域展开详细的介绍。 生物质能市场的发展现状与趋势 德国市场之电力领域 随着1990年德国《电力供应法》的生效,生物质能走进了德国市场。2003年有了一次质的飞跃,净增加量为700兆瓦。2004年德国对《可再生能源法》(EEG)进行了修订,为能源转型保驾护航,在此之后,德国的生物质能市场开始稳步增长,虽然相较于光伏或风能的增长动力还有一定的差距。由下图可见,2009年电力行业的新增装机量最高,新增的生物质发电量约为1300兆瓦。但值得注意的是,由于2014年《可再生能源法》EEG的再次修订,补贴制度发生了变化,因而从2014年起,德国的生物质能源市场在电力领域的增长出现了大幅下降,原因是政府将重点放在了对已有设备的现代化改造,而不是投入建造更多新的设备,一定程度上避免了过剩生产和资源浪费的现象。 图1:德国生物质能发电市场 德国市场之供热领域 德国生物质能供热市场的发展得到了联邦和州两级政府的资助计划支持,从1999年开始的已经有相应的市场激励计划(MAP),在此之前还有分别为1亿马克和2亿马克的资助项目。有了政府的大力支持,生物质能供热领域的市场一直在蓬勃发展,尤其是颗粒燃烧供热系统如锅炉和火炉。由下图可见,在2006年出现了新增32000个颗粒锅炉首次高峰之后,2007年市场出现了急剧下降,但在之后的2008年该领域又再一次创下了新的记录,增加了43000多个工厂。从那时起,市场年平均增长量都在25,000至43,000台之间波动。 图2:德国生物质能供热市场 除此之外,德国的生物质柴油市场也从2000年起在政策支持下动态发展。在2001年至2008年期间,全德国生物柴油的生产能力从约50万吨增加到了500万吨,翻了整整十倍。但是自2006年起,生物柴油的税率突然提高,德国制造商的市场显著恶化,最终导致了生物柴油的停产。而德国的生物乙醇市场始于2004年,在2009年产量首次超过了50万吨。迄今为止,2015年和2016年的产量最高,约为74万吨。 图3:德国生物质乙醇市场 欧洲市场 截至2015年底,欧洲生物质发电厂的发电总量已超过37000兆瓦,约占全球装机量的38%(约98,000兆瓦),同年新增生物质能装机量为1700兆瓦,约占全球新增总量的27%(6400兆瓦),增长趋势如下图所示。 图4:欧洲生物质市场 在所有的欧洲国家中,德国以绝对的优势在生物质能领域位居榜首,连同瑞典,英国,意大利和芬兰这五个国家,其生物质能总装机量占据了欧洲发电量的65%以上。下图为2015年欧盟生物能源产量排名的前10个国家。 图5:欧洲生物能产量排名 全球市场 自2001年以来,生物质能发电领域的全球市场一直不太稳定。在2005年达到峰值(5,000MW)以后,市场进入了相对饱和的阶段,因而增长一度非常缓慢。但从2009年开始,市场有了明显回暖的迹象。在2016年,全球安装了近8800MW的新电厂用于发电,成为历史之最。根据2017年的统计数据,在全球范围内,利用生物质的发电量超过了550TWh,相当于全球总发电量(25721TWh)的2.1%,且这一比例仍在不断增长。 图6:全球1990-2017年生物质能发电量发展趋势 德国生物质能产业价值链 生物质能产业的价值链跨度从原材料的种植和加工,到各种性能水平工厂的规划和融资(从小型工厂到发电厂),再到工厂的制造和组装以及大型组件(CHP装置,电机)的生产,还包括了工厂的建设运营以及系统维护。这里将对德国的生物质能产业价值链进行简单的介绍。 1.工业生产与制造 生物质能设备供应商 生物能源工厂种类繁多,包括沼气厂,生物质供热厂,木材加热厂,液体生物质发电厂等等,因而制造商和供应商的规模也各异。在木材加热系统领域,除了一些专业公司以外,大型采暖建筑公司也已进入市场。在生物燃料领域,机械和钢铁建筑公司也有很高的活跃度,有生产生物柴油或生物乙醇等生物燃料的能力。 供应商和零件制造商 供应商是生物质能产业价值链的核心部分,尤其包括钢铁建筑,机械工程和电气工程领域的公司。大型部件的制造商,例如发动机,热电厂和发酵罐,储气罐,排气系统,搅拌器等均是生物能源领域的重要供应商。 2.项目规划 项目规划公司 大型工厂的规划和实施通常是由专业的项目规划公司或制造商执行的。除了地点的选择外,项目工程师的任务还包括汇编合适的系统配置,分析项目的获利能力以及执行批准程序等,同时还要对生物质能厂的施工进行监督,并将该系统最终移交给运营商或投资者。 能源行业专业人士 对于用于住宅和公司建筑物的供热/热水的生物质能设备来说(例如木片或原木加热系统),通常还要由能源行业的专业人员,水管工和供暖安装人员来负责该系统的规划。 3.融资与保险 银行和金融机构 根据投资成本的多少和生物质能工厂的规模,项目可以通过公司、项目融资或作为项目财团的一部分来实现,方式为经典的贷款支付利息模式。投资群体包括大型公司,银行合作社,市政公用事业和中小型企业或私人捐助者。 保险公司 在国家和国际层面上生物能源使用的增长会导致对保险服务的需求增加,由于对大型工厂的大规模投资,风险管理也面临着巨大的挑战,从施工到调试直至工厂运行过程中都会出现各种风险,因而保险也是生物质能产业链中必不可少的一份子。 4.安装与维护 建筑公司和设备制造商 生物质能设备厂的建设和电缆的铺设是由建筑公司和工厂建设者负责的,其中一些作为总承包商负责总承包项目的实施。 太阳能服务与维修公司 对于沼气厂和生物质能热电联产厂的运营商而言,无故障运行至关重要,因而系统的运营管理和维护服务必不可少,这部分工作是由系统制造商或外部服务公司负责执行的,会通过定期的特殊测试来检查设备的运营情况 5.认证和测试 独立的认证和测试机构可以为生物能源工厂发电提供服务,从而使其满足设备运行和电网供电的技术要求。 6.生物能源设备的运营 生物质能设备的经营者范围也是多种多样的,从个体经营者(生物质供热,热电联产电厂)到合作社,再到项目计划公司,市政公用事业或大型电力供应商,还包括例如生物柴油或生物乙醇等生物燃料的生产者,均可以参与到生物质能设备的运营中去。