《生物质能直燃发电技术展望》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-08-29
  • 针对生物质能资源客观存在的不利现状及生物质能直燃发电技术面临的技术难题,生物质能直燃发电行业技术探索可主要从燃料加工技术优化、燃烧发电技术优化、智能控制水平提升等方向着手,最大程度规避资源能量密度低、有害元素含量多等特点,提升技术水平。

    优化燃料加工技术

    生物质能热电联产的规模化、高效化发展离不开生物质燃料的规范化、统一化生产。生物质原料收集后、燃烧前的预处理工作意义重大。生物质原料品种繁杂、能量密度低、水分大,不经处理直接燃烧,不利于锅炉、汽机等主设备稳定运转,不仅发电效率低,而且对设备损害极大。理想的生物质燃料应该具有低含水量、高能量密度、形状规则等特点。为解决上述问题,可重点探索水分即时检测技术、快速干燥技术、成分即时检测技术、适应性压缩成型技术和标准化生物质燃料生产技术。

    其中,压缩成型对生物质资源化利用意义重大。燃煤发电的稳定性很大程度来源于燃料性质的稳定和较高的能量密度,生物质燃料燃烧的不稳定主要也是来源于燃料性质的多样性和较低的能量密度。基于此,可考虑在有效获取生物质燃料水分、元素含量等重要参数的基础上,将不同的生物质原料通过适应性加工,获取物理形状、含水量、元素成分等统一高品质生物质燃料。目前,压缩成型技术和设备已取得一定成果,应在此基础上结合具体锅炉类型、燃烧条件等进行针对性改进,进一步提高生物质燃料的利用价值,对提高能源利用率、保障生物质发电设备健康稳定有积极作用。

    此外,结合即时检测与压缩成型技术,实现对不同生物质原料的统一加工,将不同成分、不同形状的生物质原料,加工成高能量密度、成分统一的生物质燃料,便于标准化生产的实现。目前,生物质能直燃发电过程通常只是将生物质原料进行简单破碎甚至不进行处理就送入锅炉燃烧,导致上给料设备运转不畅、燃烧过程不易控制、温度不稳定、锅炉腐蚀严重,给安全稳定生产带来较大风险。基于上述影响,可在标准化生物质燃料生产技术的标准化、规范化方面着手,将燃料识别、燃料制备等多个过程加以改进优化,探索生物质燃料相关关键技术并加以整合联动,提高直燃发电工艺的生产效率。

    提升热电联产效率

    生物质能直燃发电工艺热电转换效率在30%左右,生物质能热电联产工艺可将能源转化效率提高至60%~80%。生物质能直燃热电联产过程中如能做到燃料充分燃烧、热量与循环水充分换热,控制燃烧条件使燃烧稳定无污染,各级换热过程热量损失降到最低,各阶段优质高效统一,可将生物质能热电联产的优势充分发挥,有助于绿色低碳生产流程的实现。

    一是燃烧过程即时优化与调节技术。为使燃烧过程稳定,实现稳定的热量供应,同时避免氯元素造成的腐蚀,可在燃料元素成分、含水量等参数及时获取的基础上,对燃烧控制系统进行反馈,进而即时调整炉内进风、进料情况,以实现燃料性质与燃烧条件的对应统一,达到燃料充分、稳定燃烧、灰渣易排出、热量集中等目的,提高锅炉燃烧效率,保障安全稳定生产。

    二是传热过程技术优化。热电联产的电力生产过程和热量供应过程中,传热效率直接影响生产效率,需加强流体力学与传热学的理论分析,提高发电过程、供热过程的换热效率。同时基于生物质燃料碱金属及氯含量高的特性,进行燃烧优化,规避燃烧产物中碱性物质、飞灰等的生成,解决腐蚀与结焦的难题,保障锅炉等主要设备的热量传递效率。通过改进锅炉、管道几何形状与布置,更换高效换热工质,增加余热回收装置等方式,提高能量利用效率,实现燃烧、发电系统的长周期安全稳定运行。

    三是超低排放与灰渣综合利用技术。可通过在燃烧前增加燃料预处理工序,燃烧中添加辅助物、控制燃烧条件,燃烧后高效捕集污染物等方式,实现生物质发电过程污染物的超低排放或者零排放。燃烧前预处理可通过生物质液化、气化等化学性质优化过程实现污染元素的提前剥离,燃烧中可通过特定条件下的催化反应或者避开污染物生成的温度区间避免污染物的产生,燃烧后可通过催化反应、吸附等手段实现污染物的收集处理。同时生物质发电会产生大量灰渣,探索低成本的灰渣综合利用技术,变废为宝,降低污染的同时创造价值,提升资源利用率。

    智能化机械化改造生产过程

    智能化与机械化是工业发展的必然选择,实现高度智能化和机械化可以极大地提升生产效率、降低运维成本、降低人员伤亡风险。

    一是全流程动态检测与自动调控技术。要从燃料收加储运到燃烧、排放、发电、供热各环节,构建智能监控系统,实现对质量、能量输入输出的动态监控,对工艺流程中压力、温度、流量等参数的实时反馈,并根据设定参数与即时参数的差异分析处理得到优化方案,反馈至调节系统,立即进行调整优化,实现工艺流程的即时最优化配置,打造智能电厂。要统筹硬件、软件需求,提高数据获取能力和传输反馈效率,同时通过大数据手段实现解决方案的及时获取,从而实现生物质能直燃发电系统的整体智能化升级。

    二是全流程机械化设备改造。通过生物质能直燃发电各关键环节和设备机械化的实现,可有效弥补生物质燃料性质差、燃烧调整困难等劣势,助力生物质能直燃发电规模化发展。生物质原料收集后可通过相应设备的机械化处理得到高质统一的生物质燃料,根据不同原料的形态成分、燃烧特性研究常温常压下的生物质燃料成型机理,以简易、高效为出发点制造秸秆打包、压缩成型的一体化设备,实现从农田直接获得成型燃料。上给料系统机械化改造可依据生物质燃料特点和即时参数,根据产品需求实现定时定量的燃料供应。生物质发电废料处理方面可配套灰渣清理、再利用的一体化设备,避免产生污染的同时实现副产品的高效生产。开发生物质能直燃发电系统特色的检修、巡检机器人(12.940, 0.99, 8.28%),配备成像和基础检测功能,实现对高危场所的自动化巡视、参数检测。

  • 原文来源:https://newenergy.in-en.com/html/newenergy-2426245.shtml
相关报告
  • 《生物质气化发电多联产技术在生物质能领域意义重大》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-03-04
    • “生物质气化发电多联产技术”在刚刚过去的2018年可谓是名声大噪,它是国家林业和草原局首届科技成果发布会的五大成果之一,并获得了2018年梁希林业科技进步一等奖、江苏省科技进步一等奖等。南京林业大学材料科学与工程学院教授、博士生导师周建斌先生为大家讲述他率领的团队在国内外首创研发的“生物质气化发电多联产技术”。 生物质气化多联产的原理 生物质气化发电联产炭、热、肥技术”就是以农业、林业加工剩余物(秸秆、稻壳、果壳、林业三剩物等)为原料,通过热解气化的技术同时转化成可燃气、生物质炭、生物质肥,此技术在不需要外加能源和其他任何添加剂、化学药品、助剂及催化剂的条件下,实现了生物质的绿色、高效、高值化利用。气体产物即可燃气直接用于发电或替代煤烧锅炉供热、固体产物即生物质炭根据原料不同可用于生产高附加值的活性炭、工业用炭、机制烧烤炭、炭基肥料等,生物质提取液经回收后用于生产液体肥料。 生物质不如太阳能、风能出名的原因 由于能源危机和环境污染问题,我国以及世界各国都重视清洁能源的发展,生物质能源利用技术有了一定的发展,但是没有达到预期的规模或是影响,有以下几方面原因: 第一,大家对生物质的认识上不足或者错误,比如我国有18亿亩耕地,每年有10亿吨左右的秸秆,能源领导、学者和企业家都认为生物质太少,担当不起能源的重任,甚至认为是不足挂齿的!可是中国有46亿亩林地,60亿亩草地。被遗忘的生物质(城市木废料)主要包括:建筑废木材、旧城改造、大件废家具、园林绿化枝桠材等,南京市5000吨/天。 据估算地球上每年生产的生物能总量达1600-1800亿吨(干重),相当于目前世界总能耗的5倍以上。 第二,在国家层面(包括发达国家),由于之前投入了大量资金,但没有达到预期的收益,让很多部门失去信心,相关政策实施的连续性不够,导致生物质能源整体的发展比较缓慢。 第三,对生物质的特性,例如较为分散难以收集,秸秆类的季节性及能量密度低等认识不足。 生物质气化多联产的优势 针对传统的生物质气化、生物质炭等行业长期存在的产品单一、废水废渣污染(国内外所有教科书、专著、文章和专利包括工程项目)、生产规模小且连续稳定性差、经济效益不佳等突出共性问题,于2002年开始在世界上首创了生物质气化多联产技术并产业化应用。 这项技术得到了电力、能源、林化等多个行业内多位院士的高度评价,改变了传统生物质气化(能源)、生物质炭、生物质肥等行业的产品单一、经济效益不显著、环境污染大等问题,在技术和产业的颠覆性创新主要体现在以下四个方面: (1)颠覆了传统的生物质气化(能源)历史,不仅有生物质能源,还可以生产生物质炭、肥料! (2)采用生物质气化热燃气-蒸汽联合循环发电关键技术,在国内外首次解决了生物质燃气净化和焦油处理的两大气化技术世界性难题,并有效地解决了气化发电的经济性、规模性、自动化及系统的可靠性、稳定性和标准化问题! (3)开创了活性炭生产技术的新纪元,颠覆了传统的活性炭生产历史,不仅不需要外加能源,在生产活性炭过程中还可以发电、供热、产肥料! (4)颠覆了几千年的世界烧炭的历史,在生产炭的同时还可以发电、生产肥料! (5)使用炭基肥和生物质醋液肥助推国家肥料和农药的零增长,甚至可以直接减少肥料用量10-30%,同时修复退化、板结、酸化和污染的土壤,使我国山更青、水更绿、地更沃、食品更安全! 生物质气化多联产的发展前景 这项技术使农林废弃物吃干榨净,能够产生发电、热水、活性炭、工业用炭、机制烧烤炭、炭基肥、液体肥等多种产品,完全颠覆了直接燃烧发电、单一产出的模式,具有广阔的发展前景: 第一本项技术的良好经济效益,是传统生物质能源、生物质炭、生物质肥效益的3倍。 第二同时具有优越的环境效益,由于生物质中的大部分碳、氮、硫元素保存在生物质炭中没有排放到大气中,不仅实现了吃干榨净和零排放,还可以生产多种有利于生态安全的绿色电能、绿色活性炭、绿色肥料。 第三对我国发展绿色能源和节能减排有重要作用,实现了能源(发电或者供暖)从高排放→低排放→零排放→负排放(CO2、NxOy、SO2固定在生物质炭中)。这对我国节能减排、能源结构调整将产生重要国际影响。 “生物质气化发电多联产技术”的实施和推广,将使我们的天更蓝、水更清、食品更安全,是实现国家肥料和农药的减量并助推国家绿色、循环、可持续发展的必经之路。为世界开启利用植物生物质能源这一巨大的能源仓库,提供了一条切实可行的发展之路,从此绿色清洁能源的获得可以实现循环再生、高效稳定,在生物质能源利用这个领域具有划时代的重大意义。
  • 《生物质能产业发展出路》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-08-12
    • 生物质能可利用量位居水能、风能、太阳能的前列,是唯一能够替代化石能的可再生能源。产业经过近二十年的发展,依然表现得不温不火,能源利用量约占可再生总量的1%左右。   清洁高效的发展生物质能产业,需要全社会共同关注:首先是政府顶层设计,营造生物质能产业相适应的发展环境;二是生物质能产业需要技术创新,实现关键技术突破。二者相互配合是生物质能产业稳步发展的先决条件与出路。   顶层设计   生物质能与其它可再生能源不同,水电、风电、光电可以一次性投资终身受益,不存在发电原料价格问题。生物质能则不同,它涉及到农民增收增效,涉及到环境保护雾霾治理,涉及温室气体排放全球气候变暖。解决生物质能产业发展的难题,需要政府顶层设计,营造生物质能与化石能公平竞争的环境。   从生物质能与标煤相比较:   煤炭价格根据热值不同产地不同,平均在450元/吨,折合成标煤每吨不足600元。   市场上收购1吨生物质原料按300元计算,扣除原料中的吸附水实际原料价格超过350元/吨。   生物质经过能源转化才能更好的清洁利用,能源转化成本按200元/吨,转化率按90%计算,转化2吨生物质热值相当于1吨标煤的热值,成本约1100元。政府从生物质原料上补贴250元/吨,才能与化石能处于同一起跑线。   中国改革开放40多年来,国民的薪资水平上涨了100倍左右,粮食价格上涨近10倍,城乡居民用电价格上涨不足0.5倍。很多人可能没有在意,我们每用1千瓦时燃煤发电,大约排放1m3的二氧化碳。   德国对温室气体排放的收费将由此前每吨二氧化碳10欧元大幅上涨至25欧元,2025年以后,碳排放价格将由市场决定,上限为60欧元/吨。中国每年二氧化碳排放量有100多亿吨,如果参考德国经验排放1吨二氧化碳收费20元人民币(相当于3欧元),用于补贴农户或原料收集者,生物质能产业发展将会是另外一种景象。   生物质能产业发展,需要政府权衡利弊,准确把握顶层设计。   技术创新   生物质能产业发展需要政府支持指导,更需要产业技术创新,重点应该放在能效利用上。生物质能源转化率的高低,直接关系到生物质能产业的经济效益和可持续发展。   实验数据显示生物质在封闭条件下的中低温热解,能源转化率可达95.5%。其中一种中低温热解显示,热解产物比例大概是:固体产物:液体产物:气体产物(30%:45%:25%)。根据数据计算1公斤生物质原料在密闭条件下产生的固体燃料和气体燃料的热值合计约14350千焦,大概是0.5公斤标煤的热值。   该文章作者邱祖祥从2004年开始关注生物质能产业,受焦炉炼焦工艺的启发于2014年搞了一个《生物质能源转化技术创新方案》,工艺创新的独特之处:   1. 能源转化率高 生物质原料在相对密闭环境中干馏热解,原料中的少部分空气在原料干燥过程中随水蒸气排出热解通道,其余生物质在热解通道内完成中低温热解,满足能源转化率95.5%的基本要求;   2. 规模化能源转化 生物质能源转化规模根据生物质能原料产地的多少、运输距离等因素,可选择40—100万吨/年的产业规模,形成规模化生产;   3. 创新工艺节能环保 首先生物质原料不用深加工。热解降耗措施采用中低温热解,不刻意营造高温环境,热量来源:一是助燃气体通过热交换获取热量;二是利用生物质热解放热自然升温;三是燃烧室温度满足不了设计温度时,利用少量的热解气体补充增温。从三方面获取热量,可节省大量的燃料消耗,生产过程不存在有害气体排放。   重大科技创新项目,需要组建相当规模的研发设计团队,需要成立相应规模的新型实体企业,前提条件是要确认创新项目的可行性。   政府部门对个人技术创新的困境缺少必要的了解和认识,规定评审创新项目必须有研发设计团队和实体企业为依托,否则不得参与评审。   目前生物质能企业都是在政府补贴的情况下生存,没有政府补贴的科技创新项目难以与化石能竞争,对企业产生不了吸引力。   创新体制的进一步完善,有利于科技创新项目尽快转化为生产力。   产业出路   生物质能产业在清洁环保前提下,替代化石能高效利用是最好的出路。   据悉生物质天然气的能源转化率可达到85%以上,它以餐厨垃圾、禽畜粪便、秸秆等碳水化合物为原料,不仅解决多种垃圾环境污染的问题,而且可实现清洁生产。政府从生物质天然气产业的各种优势考虑,制定了生物质天然气产业发展规划。   生物质天然气产业有着各种利好,它不可能把所有的生物质能全部转化为天然气。一方面不是所有生物质都适合厌氧发酵,另一方面生物质天然气也要达到供需平衡,产能过剩社会难以吸收。   大量的农作物秸秆、农林剩余物、林木枝叶、有机物干垃圾等,同样是亟待解决的现实问题。   《生物质能源转化技术创新方案》参照常规中低温热解产物技术,热解产物以1公斤生物质热解为例:   固体产物控制在30%,固体产物的热值约27000千焦/公斤,0.3公斤固体产物的热值8100千焦。固体产物属清洁能源储存运输方便,相当于2.25度电的热值,可替代燃煤直接使用;   热解气体产物的产率25%,热值约25000千焦/公斤,0.25公斤气体产物的热值约6250千焦。气体产物二氧化碳约占10%,一氧化碳约占50%,甲烷、乙烯等含量约40%。气体产物的热值较高可直燃发电,也可根据市场需求将气体产物中的一氧化碳加氢液化,满足油气资源的不足;   液体产物的主要成分是生物醋,另外含有少量的生物油等可燃物。生物醋、生物油应用方面的研究比较多,也存在一定的增值空间。   生物质天然气产业与生物质热解产业相互配合,基本上可以转化所有生物质原料及有机物垃圾。能转化产物均属清洁能源,实现真正意义上的替代化石能,应该是未来生物质能产业发展的出路。