《SmartCow增强人工智能边缘视觉处理》

  • 来源专题:新一代信息技术
  • 编译者: 张卓然
  • 发布时间:2023-04-19
  • 马耳他的SmartCow使用英伟达最新的Jetson Xavier NXOrin NX模块更新了其Ultron边缘人工智能视频分析平台。

    最新的Ultron系统在德国嵌入式世界展(EW2023)上推出,旨在通过三种输入输出单元的模块化设计,实现智能城市和物联网应用。Ultron的默认配置是SMCPN-D1的主单元,具有四个模拟输入和八个数字输入、四个数字输出和八个隔离数字输出。

    Ultron是一款具有传感器融合功能的人工智能控制器,可在边缘实现视觉人工智能的工业应用。Ultron适用于各种配置的视觉人工智能应用的低延迟智能交通和智能制造。它也适用于智能工厂、智能城市、智能建筑和智能农业。

    Ultron通过图像分类、目标检测和分割等模型架构进行视觉分析,使自动化比传统的可编程逻辑控制器(PLC)解决方案更进一步。

    SMCPN-D2模块支持四个RS485端口或32个通用IO(GPIO)端口。对于存储,MCPN-D4模块添加了SATA和固态驱动器。

  • 原文来源:https://www.eenewseurope.com/en/smartcow-boosts-ai-edge-vision-processing/
相关报告
  • 《应对边缘人工智能推理带来的挑战》

    • 来源专题:新一代信息技术
    • 编译者:isticzz2022
    • 发布时间:2024-03-13
    •       GPU无处不在的图形处理单元,可以说是当今最重要的计算技术。它使人工智能处理成为可能,但代价不可持续,巨大的功耗加剧了这种情况。最初构想的统治软件工程的范式是由在传统计算架构上执行的一系列指令组成的,该架构被称为冯·诺伊曼体系结构CPU。这种持久的处理架构只能执行严格可编码的工作。它不能处理任务,如识别物体或乐谱,或写一篇文章。这些任务被称为预测性人工智能和生成性人工智能,可以通过大型语言模型(LLM)处理,这些模型需要在时钟周期内处理数千亿(如果不是数万亿)个参数,远远超出了CPU的领域。       今天,大模型学习和推理是在配备有尖端GPU阵列的数据中心进行的。虽然这种方法有效,但它会导致收购/运营成本飙升和电力消耗螺旋式上升,从而可能使电网不堪重负。边缘推理则不同,它有望服务于工业、商业、医疗、教育和娱乐等不同领域中最大的AI应用市场。       在边缘执行推理时,功耗、成本和延迟不容忽视。高性能、低延迟、低成本和低功耗是边缘推理的关键属性。GPU最初是用于图形并行处理的,在执行AI算法时,可提供的计算能力会下降。在ChatGPT-3的使用情况下,效率下降到个位数。GPU供应商通过增加大量设备来解决这一限制,但代价是数据中心AI处理的能耗呈指数级增长。瓶颈在于内存和处理单元之间的数据传输。从历史上看,内存技术的进步并没有跟上处理逻辑的进步。随着时间的推移,由于内存无法以处理器所需的速率提供数据,这种差距导致了可用处理能力的下降。大多数时候,计算单元会等待数据可用,并且随着处理能力的增加而恶化。处理单元的计算能力越高,为它们提供数据的瓶颈就越大,这就是 20 世纪 90 年代中期出现的内存墙。为了缓解这个问题,创建了一个存储器层次结构。底层是速度较慢的主存储器,顶部是处理单元旁边的寄存器。在两者之间,是一系列容量较小、速度较快的存储器层,用于加速数据传输。虽然寄存器能够以所需的速率向计算单元提供数据,但它们的数量通常限制在数百个或最多几千个,而如今需要数百万个。       现在就需要一种打破内存墙的创新架构。一种建议是将所有分层缓存折叠成紧密耦合内存(TCM),其外观和行为类似于寄存器。从处理单元的角度来看,可以在时钟周期内的任何时间访问任何位置的数据。192兆字节的TCM大约相当于15亿个单比特寄存器。通过寄存器传输级 (RTL) 设计流程实现 192 兆字节的寄存器将是艰巨的,构成了重大的挑战。相反,高抽象级别上的设计实现流程将大大缩短并加速加速器的部署。如果结合 192 千兆字节的板载高带宽内存 (HBM),单个设备可以在单个芯片上完全运行 GPT-3,使其成为高效的实现。在处理 LLM 时,它将达到 50% 到 55% 的效率,比 GPU 大一个数量级以上。外部存储器和计算单元之间的数据传输急剧减少可能导致功耗大幅下降,每千兆次浮点运算约50瓦。同时,与GPU相比,它将使执行延迟减少10倍以上。更为关键的是,架构不应该被硬编码。相反,它应该是完全可编程和高度可扩展的。人工智能应用算法几乎每周都在发展。更频繁的变化仅限于对算法的性能、延迟、功耗等属性的微调,这些属性对成本有影响。定期地,全新的算法结构会淘汰旧版本。新的加速器架构应该能够适应上述所有方面,并允许在该领域进行更新和升级。这种完全可编程的方法还应该支持在逐层的基础上自动进行从4位到64位的整数或浮点数可配置计算量化,以适应广泛的应用。权值和数据的稀疏性也应该得到即时支持。从部署的角度来看,加速器可以作为主处理器的配套芯片,在用户可见的方案中运行。算法工程师可以像在主处理器上运行一样编写他们的算法,让编译器将加速器上运行的代码与主处理器上运行的代码分开。这种方法将简化和简化加速器的部署和使用模型。与在低级别运行的GPU驱动的数据流不同,这种想象中的架构中的数据流将在算法级别工作,通过使用MATLAB代码和图形进行读取,并在本地执行。这可能吗?可能像这样的设备比最先进的基于GPU的加速器快5到10倍,同时消耗其功率的一小部分,并具有显着较低的延迟,满足边缘AI推理的需求。毫无疑问,这将简化部署和使用,吸引大量科学家和工程师。
  • 《人工智能助力生物识别精准化》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-05-26
    • “你是谁?”在当今社会,无处不在的身份识别场景在无声发问。进小区门,要问你是业主本人吗?进家门,要扭动匹配的钥匙或按下指纹;开电脑工作,弹出密码输入弹窗。每个人都是独立的个体,我们能否使用唯一特性与外界建立联系?唯一意味着安全,也意味着核实更方便准确,就像我们的身份证,上面有唯一的数字编码。 与此同时,数字化时代,我们与机器的互动,从敲键盘一步跨向手指点击滑动、开口对话、抬起头、眨眨眼,远隔千里的人们能便捷地沟通交流、能跨省跨国网上办事,但客观上无法实现“亲眼所见”,也给建立“信任”关系带来新的挑战。 人工智能技术的发展,针对数字社会人与人之间、人与机器之间如何建立“信任”关系,提供了一个很好的技术解决手段,即生物识别技术。你用什么方式证明自己?怎样才能定义这世界独一无二的你?设备的进化中,谁在保证个人使用的安全性?无接触生活的背后都是技术在化解复杂,生物识别技术的研究,正是希望解决这些问题。 1.生物识别是数字社会的重要基础 无论处于哪个社会经济发展阶段,“人”始终是最重要的核心要素。人类作为群居动物,在地球上有人类的时刻,“信任”的需求就应运而生,通过视觉“亲眼所见”、听觉“亲耳所闻”等辨别同伴建立信任关系,这种最原始的通过“亲眼所见”等手段建立“信任”的方式也将伴随人类一直延续下去。 数字化世界,需要迭代新的信任交互,生物识别技术是技术发展演进到一定阶段的必然产物,也是一种新型数字身份的基础设施。它基于个体生物特征进行自动识别的一种技术,结合计算机与光学、声学、生物传感器和生物统计学原理等,依靠人体的生理特征或者行为特征来进行身份验证的识别,是当前人工智能技术和信息安全技术在工业界落地应用最显著的代表性成果之一。 所谓生物特征包括人脸、指纹、声纹、虹膜、指静脉、体温等,行为特征则记录签名笔迹、行走步态、坐姿等。这些生物特征各有特点,比如每个人的静脉血管都不是一样的,血管也足够多,因此它的信息唯一、丰富,几乎不能被复制;而一个人随着年龄增长和一些突发情况,行为特征比如走路姿态可能会发生变化,可以理解为特征信息稳定性不那么强。 唯一的、稳定的生物特征就具备理论上的安全基础,我们将它们进一步结合形成有效技术手段,同时采用多种方式来确保它准确、高效就像使用身份证确认“你就是你”。 作为一种身份认证方式,目前生物识别技术已经在金融、教育、司法、医疗、社会治理等行业都有了广泛应用,它需要满足不同场景、行业要求和不断变化演进的业务需求。它将迅速成为数字经济社会的重要信息基础设施之一。 2.生物识别开始出现大规模技术创新 从技术上来说,传统生物识别技术在鲁棒性、准确性以及抗攻击能力等方面,近年来都有大幅提升。比如突破2D人脸存在景深数据丢失的局限性,3D人脸识别技术因其具有更强的描述能力开始在高准确性应用中逐渐增多;在3D识别的基础上人脸活体检测的新技术也进一步被采用;防止人脸数据库被盗库的识别技术也已被提出;指纹识别则开始引入基于手指皮肤颜色和的脉搏心率信号的活体检验,用于防止被仿生导电材料做成的假手指攻击;声纹识别可结合使用电磁场检测,来判断声源为真人还是扬声器等。 另一方面,考虑到应用场景的不同需求:持续认证、移动设备上识别、个人隐私保护等,新型生物识别技术也是应需而生。比如,浙江大学网络空间安全团队针对持续认证,开发了“心脏密码”系统通过不间断用生物雷达的无线信号来感知心脏运动,实现了易用性高的非接触式可持续认证;针对移动设备上的生物识别,利用设备内置摄像头捕捉到的眼球运动,智能手环上测量到的心电图,以及虚拟现实头罩测量到的眼电图和脑电波都相应的实现了可靠的生物识别;针对生物识别中的个人隐私保护,采用无线信号成像来代替摄像头,既避免了摄像头受视角和阻挡等条件的限制,更消除了直接获取图像的隐私泄露风险。 另外,正如每种生物特征各有特点,在充分考虑各种攻击场景下,任何单一生物识别技术往往都呈现出特定的优势和局限。每个模态都具有不同的数据安全程度、采集适应场景、隐私敏感度等,因此解决方案并不能通过单一技术完全达成。 多模态多因子生物识别技术融合因此非常重要。比如夜晚光照不理想,人像识别率低,结合红外成像和热成像的跨模态互补就能增强人像识别的准确度。像是蚂蚁金服多模态融合人脸识别技术实现用户的精准识别,满足金融级误识率(低至千万分之一误识率)下,大大超出了单模态人脸识别技术能达到的性能瓶颈,并提升了人脸识别的安全性。同时,还充分利用移动设备的芯片级安全能力,经过与产业链多方的合作,构造了基于TEE(可信执行环境)的全链路安全协议,为生物支付提供了强有力的安全保障。此外,通过风险感知模块检测黑产攻击,风控引擎自动更新风险模型,风险拦截效率大幅提升,充分保证了交易安全。 未来生物识别技术的趋势便是如此,将会从传统的只提取人体生理特征,向人、物理世界、数字世界融合的认证方向发展。生物识别技术将在和环境特征、数字凭证相结合,满足时空关联、多模态多因子融合的基础上完全实现可信认证。 3.“生物识别”“多模态融合”作为主流研究方向形成标准化的应用共识 从实验室走向产业商用,从模型走向安全产品,靠的是持续生物识别技术迭代和多重技术算法的保障,尤其引起我们关注的是“安全和隐私保护”。 基于这一点,去年,浙江大学和蚂蚁金服联合成立了数据安全与隐私保护实验室,汇集了双方创新力量和优势资源,产学研联合推进前沿科技研究,提升国内生物识别行业安全技术水平。 目前针对人脸数据脱敏、不可逆、可更新、加密等做了大量研究,给生物识别信息保护提供可行的安全技术解决方案。部分安全技术已经转化应用到蚂蚁金服人脸识别技术上,支撑大量金融级安全应用。 在生物识别技术突破最多的是人脸识别,即在图像特征抽取和人脸比对环节中取得了很大进展。但从实验室之外的实际场景应用模拟发现,其影响因素很多。从全链路的角度来看,活体检测、人脸交互、关键点定位、人脸跟踪等在真实的场景下,特别是不同的手机、环境、用户背景等条件下,想做到非常好并且稳定的用户体验是很难的。我们对此进行了很多特殊的优化,如使算法在不同的手机上达到比较一致的运算速度、响应时间,通过文案设计提高用户对刷脸的感知和理解,适应用户背景(如光线、角度等),分析基于其他传感器数据的反馈等。同时企业根据自身业务的不断发展,向学术界持续反馈新的需求,也反过来促进了联合实验室在新技术前沿开拓的方向感和紧迫感,产学研联动形成良性闭环发展。 基于我们共同进行的大量研究、实践积累,近期企业已在IEEE成立“移动设备生物特征识别”标准工作组,并立项“生物特征识别多模态融合”IEEE国际标准。这也是中国企业首次在国际标准中,提出移动设备多模态融合技术的实现框架、功能要求、性能要求、安全要求等。这意味着,“生物识别”、“多模态融合”作为主流研究方向将形成标准化的应用共识。这也是一项技术脱离实验室踏上商用之路的重要一步,有利于推动行业平均技术发展水平。而国际标准是国际规则和共识重要通用载体,对整个行业良性发展至关重要,也是具备技术实力的中国企业必须具备发言权之处。毫无疑问,高校和企业在生物识别这类国际前沿技术及标准上的探索,是中国科技布局眼光、研究能力、科学严谨性的综合体现。它同样预示着,中国企业在人工智能技术领域的国际竞争进入新阶段——从产品出海到技术走出去,如今又向输出全球标准迈进。